Wang Liang-Hung, Xie Chao-Xin, Yang Tao, Tan Hong-Xin, Fan Ming-Hui, Kuo I-Chun, Lee Zne-Jung, Chen Tsung-Yi, Huang Pao-Cheng, Chen Shih-Lun, Abu Patricia Angela R
School of Advanced Manufacturing, Fuzhou University, Quanzhou 362200, China.
The Department of Microelectronics, College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China.
Diagnostics (Basel). 2024 Aug 29;14(17):1910. doi: 10.3390/diagnostics14171910.
In electrocardiograms (ECGs), multiple forms of encryption and preservation formats create difficulties for data sharing and retrospective disease analysis. Additionally, photography and storage using mobile devices are convenient, but the images acquired contain different noise interferences. To address this problem, a suite of novel methodologies was proposed for converting paper-recorded ECGs into digital data. Firstly, this study ingeniously removed gridlines by utilizing the Hue Saturation Value (HSV) spatial properties of ECGs. Moreover, this study introduced an innovative adaptive local thresholding method with high robustness for foreground-background separation. Subsequently, an algorithm for the automatic recognition of calibration square waves was proposed to ensure consistency in amplitude, rather than solely in shape, for digital signals. The original signal reconstruction algorithm was validated with the MIT-BIH and PTB databases by comparing the difference between the reconstructed and the original signals. Moreover, the mean of the Pearson correlation coefficient was 0.97 and 0.98, respectively, while the mean absolute errors were 0.324 and 0.241, respectively. The method proposed in this study converts paper-recorded ECGs into a digital format, enabling direct analysis using software. Automated techniques for acquiring and restoring ECG reference voltages enhance the reconstruction accuracy. This innovative approach facilitates data storage, medical communication, and remote ECG analysis, and minimizes errors in remote diagnosis.
在心电图(ECG)中,多种加密形式和保存格式给数据共享和疾病回顾性分析带来了困难。此外,使用移动设备进行拍照和存储很方便,但获取的图像包含不同的噪声干扰。为了解决这个问题,提出了一套新颖的方法将纸质记录的心电图转换为数字数据。首先,本研究巧妙地利用心电图的色调饱和度值(HSV)空间特性去除网格线。此外,本研究引入了一种创新的自适应局部阈值化方法,用于前景-背景分离,具有很高的鲁棒性。随后,提出了一种自动识别校准方波的算法,以确保数字信号在幅度上的一致性,而不仅仅是形状上的一致性。通过比较重建信号与原始信号之间的差异,利用麻省理工学院-比哈尔(MIT-BIH)和德国柏林工业大学(PTB)数据库对原始信号重建算法进行了验证。此外,皮尔逊相关系数的平均值分别为0.97和0.98,而平均绝对误差分别为0.324和0.241。本研究提出的方法将纸质记录的心电图转换为数字格式,从而能够使用软件进行直接分析。用于获取和恢复心电图参考电压的自动化技术提高了重建精度。这种创新方法有助于数据存储、医疗通信和远程心电图分析,并最大限度地减少远程诊断中的误差。