Suppr超能文献

定量刻画蛋白质-蛋白质相互作用对配体-蛋白质结合的影响:一种多链动力学扰动分析方法。

Quantitative Characterization of the Impact of Protein-Protein Interactions on Ligand-Protein Binding: A Multi-Chain Dynamics Perturbation Analysis Method.

机构信息

College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Jiangbei New District, Nanjing 211816, China.

出版信息

Int J Mol Sci. 2024 Aug 23;25(17):9172. doi: 10.3390/ijms25179172.

Abstract

Many protein-protein interactions (PPIs) affect the ways in which small molecules bind to their constituent proteins, which can impact drug efficacy and regulatory mechanisms. While recent advances have improved our ability to independently predict both PPIs and ligand-protein interactions (LPIs), a comprehensive understanding of how PPIs affect LPIs is still lacking. Here, we examined 63 pairs of ligand-protein complexes in a benchmark dataset for protein-protein docking studies and quantified six typical effects of PPIs on LPIs. A multi-chain dynamics perturbation analysis method, called DPA, was developed to model these effects and used to predict small-molecule binding regions in protein-protein complexes. Our results illustrated that the DPA can capture the impact of PPI on LPI to varying degrees, with six similar changes in its predicted ligand-binding region. The calculations showed that 52% of the examined complexes had prediction accuracy at or above 50%, and 55% of the predictions had a recall of not less than 50%. When applied to 33 FDA-approved protein-protein-complex-targeting drugs, these numbers improved to 60% and 57% for the same accuracy and recall rates, respectively. The method developed in this study may help to design drug-target interactions in complex environments, such as in the case of protein-protein interactions.

摘要

许多蛋白质-蛋白质相互作用(PPIs)影响小分子与其组成蛋白结合的方式,从而影响药物的疗效和调控机制。尽管最近的进展提高了我们独立预测蛋白质-蛋白质相互作用(PPIs)和配体-蛋白质相互作用(LPIs)的能力,但对于 PPI 如何影响 LPI 的综合理解仍存在欠缺。在这里,我们研究了基准数据集内 63 对配体-蛋白质复合物的蛋白质-蛋白质对接研究,并量化了 PPI 对 LPI 的六种典型影响。开发了一种称为 DPA 的多链动力学扰动分析方法来模拟这些影响,并用于预测蛋白质-蛋白质复合物中的小分子结合区域。我们的结果表明,DPA 可以在不同程度上捕捉 PPI 对 LPI 的影响,其预测的配体结合区域有六个相似的变化。计算结果表明,52%的被研究复合物的预测准确率达到或超过 50%,55%的预测召回率不低于 50%。当将其应用于 33 种 FDA 批准的靶向蛋白质-蛋白质复合物的药物时,对于相同的准确率和召回率,这些数字分别提高到 60%和 57%。本研究中开发的方法可以帮助设计复杂环境下的药物-靶标相互作用,例如在蛋白质-蛋白质相互作用的情况下。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ac3/11394879/cbd162e95b99/ijms-25-09172-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验