Sgouros Aristotelis P, Michos Fotios I, Sigalas Michail M, Kalosakas George
School of Chemical Engineering, National Technical University of Athens (NTUA), GR-15780 Athens, Greece.
Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Vass. Constantinou 48, GR-11635 Athens, Greece.
Materials (Basel). 2024 Aug 25;17(17):4200. doi: 10.3390/ma17174200.
In this work, we employ molecular dynamics simulations with semi-empirical interatomic potentials to explore heat dissipation in Janus transition metal dichalcogenides (JTMDs). The middle atomic layer is composed of either molybdenum (Mo) or tungsten (W) atoms, and the top and bottom atomic layers consist of sulfur (S) and selenium (Se) atoms, respectively. Various nanomaterials have been investigated, including both pristine JTMDs and nanostructures incorporating inner triangular regions with a composition distinct from the outer bulk material. At the beginning of our simulations, a temperature gradient across the system is imposed by heating the central region to a high temperature while the surrounding area remains at room temperature. Once a steady state is reached, characterized by a constant energy flux, the temperature control in the central region is switched off. The heat attenuation is investigated by monitoring the characteristic relaxation time () of the local temperature at the central region toward thermal equilibrium. We find that SMoSe JTMDs exhibit thermal attenuation similar to conventional TMDs (10-15 ps). On the contrary, SWSe JTMDs feature relaxation times up to two times as high (14-28 ps). Forming triangular lateral heterostructures in their surfaces leads to a significant slowdown in heat attenuation by up to about an order of magnitude (~100 ps).
在这项工作中,我们采用具有半经验原子间势的分子动力学模拟来探究Janus过渡金属二硫属化物(JTMDs)中的热耗散。中间原子层由钼(Mo)或钨(W)原子组成,顶部和底部原子层分别由硫(S)和硒(Se)原子组成。我们研究了各种纳米材料,包括原始的JTMDs以及包含内部三角形区域且其组成与外部块状材料不同的纳米结构。在模拟开始时,通过将中心区域加热到高温而使周围区域保持在室温来在整个系统中施加温度梯度。一旦达到以恒定能量通量为特征的稳态,就关闭中心区域的温度控制。通过监测中心区域局部温度趋向热平衡的特征弛豫时间()来研究热衰减。我们发现SMoSe JTMDs表现出与传统TMDs类似的热衰减(10 - 15皮秒)。相反,SWSe JTMDs的弛豫时间高达两倍(14 - 28皮秒)。在其表面形成三角形横向异质结构会导致热衰减显著减慢,减慢幅度高达约一个数量级(~100皮秒)。