Ahmed Omar Shabbir, Ali Jaffar Syed Mohamed, Aabid Abdul, Hrairi Meftah, Yatim Norfazrina Mohd
Department of Engineering Management, College of Engineering, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia.
Department of Mechanical and Aerospace Engineering, Faculty of Engineering, International Islamic University Malaysia, Kuala Lumpur 50728, Malaysia.
Materials (Basel). 2024 Sep 3;17(17):4367. doi: 10.3390/ma17174367.
This research focuses on investigating the buckling strength of thin-walled composite structures featuring various shapes of holes, laminates, and composite materials. A parametric study is conducted to optimize and identify the most suitable combination of material and structural parameters, ensuring the resilience of structure under both mechanical and thermal loads. Initially, a numerical approach employing the finite element method is used to design the C-section thin-walled composite structure. Later, various structural and material parameters like spacing ratio, opening ratio, hole shape, fiber orientation, and laminate sequence are systematically varied. Subsequently, simulation data from numerous cases are utilized to identify the best parameter combination using machine learning algorithms. Various ML techniques such as linear regression, lasso regression, decision tree, random forest, and gradient boosting are employed to assess their accuracy in comparison with finite element results. As a result, the simulation model showcases the variation in critical buckling load when altering the structural and material properties. Additionally, the machine learning models successfully predict the optimal critical buckling load under mechanical and thermal loading conditions. In summary, this paper delves into the study of the stability of C-section thin-walled composite structures with holes under mechanical and thermal loading conditions using finite element analysis and machine learning studies.
本研究聚焦于调查具有各种形状的孔、层压板和复合材料的薄壁复合结构的屈曲强度。进行了参数研究,以优化并确定材料和结构参数的最合适组合,确保结构在机械载荷和热载荷下的弹性。最初,采用有限元方法的数值方法来设计C型薄壁复合结构。随后,系统地改变各种结构和材料参数,如间距比、开孔率、孔的形状、纤维取向和层压板顺序。接着,利用大量案例的模拟数据,使用机器学习算法来确定最佳参数组合。采用了各种机器学习技术,如线性回归、套索回归、决策树、随机森林和梯度提升,以评估它们与有限元结果相比的准确性。结果,模拟模型展示了改变结构和材料特性时临界屈曲载荷的变化。此外,机器学习模型成功预测了机械和热载荷条件下的最佳临界屈曲载荷。总之,本文利用有限元分析和机器学习研究,深入探讨了带孔C型薄壁复合结构在机械和热载荷条件下的稳定性研究。