Suppr超能文献

掺杂如何调控TiO表面对As(III)的吸附:一项DFT + U研究。

How Doping Regulates As(III) Adsorption at TiO Surfaces: A DFT + U Study.

作者信息

Huang Xiaoxiao, Wu Mengru, Huang Rongying, Yang Gang

机构信息

College of Resources and Environment, Southwest University, Chongqing 400715, China.

出版信息

Molecules. 2024 Aug 23;29(17):3991. doi: 10.3390/molecules29173991.

Abstract

The efficient adsorption and removal of As(III), which is highly toxic, remains difficult. TiO shows promise in this field, though the process needs improvement. Herein, how doping regulates As(OH) adsorption over TiO surfaces is comprehensively investigated by means of the DFT + D3 approach. Doping creates the bidentate mononuclear (Ce doping at the Ti site), tridentate (N, S doping at the O site), and other new adsorption structures. The extent of structural perturbation correlates with the atomic radius when doping the Ti site (Ce >> Fe, Mn, V >> B), while it correlates with the likelihood of forming more bonds when doping the O site (N > S > F). Doping the O, O rather than the Ti site is more effective in enhancing As(OH) adsorption and also causes more structural perturbation and diversity. Similar to the scenario of pristine surfaces, the bidentate binuclear complexes with two Ti-O bonds are often the most preferred, except for B doping at the Ti site, S doping at the O site, and B doping at the O site of rutile (110) and Ce, B doping at the Ti site, N, S doping at the O site, and N, S, B doping at the O site of anatase (101). Doping significantly regulates the As(OH) adsorption efficacy, and the adsorption energies reach -4.17, -4.13, and -4.67 eV for Mn doping at the Ti site and N doping at the O and O sites of rutile (110) and -1.99, -2.29, and -2.24 eV for Ce doping at the Ti site and N doping at the O and O sites of anatase (101), respectively. As(OH) adsorption and removal are crystal-dependent and become apparently more efficient for rutile vs. anatase, whether doped at the Ti, O, or O site. The auto-oxidation of As(III) occurs when the As centers interact directly with the TiO surface, and this occurs more frequently for rutile rather than anatase. The multidentate adsorption of As(OH) causes electron back-donation and As(V) re-reduction to As(IV). The regulatory effects of doping during As(III) adsorption and the critical roles played by crystal control are further unraveled at the molecular level. Significant insights are provided for As(III) pollution management via the adsorption and rational design of efficient scavengers.

摘要

高效吸附和去除剧毒的三价砷仍然具有挑战性。尽管该过程仍需改进,但TiO在这一领域展现出了潜力。在此,通过DFT + D3方法全面研究了掺杂如何调节TiO表面上As(OH)的吸附。掺杂产生了双齿单核(Ti位点处的Ce掺杂)、三齿(O位点处的N、S掺杂)以及其他新的吸附结构。当掺杂Ti位点时,结构扰动程度与原子半径相关(Ce >> Fe、Mn、V >> B),而当掺杂O位点时,结构扰动程度与形成更多键的可能性相关(N > S > F)。掺杂O、O位点而非Ti位点在增强As(OH)吸附方面更有效,并且还会导致更多的结构扰动和多样性。与原始表面的情况类似,具有两个Ti - O键的双齿双核配合物通常是最优选的,但金红石(110)的Ti位点处的B掺杂、O位点处的S掺杂以及锐钛矿(101)的O位点处的B掺杂,还有金红石(110)的Ti位点处的Ce、B掺杂,O位点处的N、S掺杂以及锐钛矿(101)的O位点处的N、S、B掺杂除外。掺杂显著调节了As(OH)的吸附效果,对于金红石(110)的Ti位点处的Mn掺杂以及O、O位点处的N掺杂,吸附能分别达到 - 4.17、 - 4.13和 - 4.67 eV,对于锐钛矿(101)的Ti位点处的Ce掺杂以及O、O位点处的N掺杂,吸附能分别为 - 1.99、 - 2.29和 - 2.24 eV。As(OH)的吸附和去除取决于晶体类型,并且无论是在Ti、O还是O位点进行掺杂,金红石型相对于锐钛矿型而言,As(OH)的吸附和去除效率明显更高。当As中心直接与TiO表面相互作用时,会发生三价砷的自氧化,这种情况在金红石型中比在锐钛矿型中更频繁发生。As(OH)的多齿吸附会导致电子回授以及五价砷再还原为四价砷。在分子水平上进一步揭示了掺杂在三价砷吸附过程中的调节作用以及晶体控制所起的关键作用。通过吸附和合理设计高效清除剂,为三价砷污染治理提供了重要见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/371d/11396678/04ab3fe3394b/molecules-29-03991-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验