School of Information Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
Guangdong Haoxing Technology Co., Ltd, Foshan 528300, China.
Sensors (Basel). 2023 Jan 29;23(3):1502. doi: 10.3390/s23031502.
Monocular camera and Lidar are the two most commonly used sensors in unmanned vehicles. Combining the advantages of the two is the current research focus of SLAM and semantic analysis. In this paper, we propose an improved SLAM and semantic reconstruction method based on the fusion of Lidar and monocular vision. We fuse the semantic image with the low-resolution 3D Lidar point clouds and generate dense semantic depth maps. Through visual odometry, ORB feature points with depth information are selected to improve positioning accuracy. Our method uses parallel threads to aggregate 3D semantic point clouds while positioning the unmanned vehicle. Experiments are conducted on the public CityScapes and KITTI Visual Odometry datasets, and the results show that compared with the ORB-SLAM2 and DynaSLAM, our positioning error is approximately reduced by 87%; compared with the DEMO and DVL-SLAM, our positioning accuracy improves in most sequences. Our 3D reconstruction quality is better than DynSLAM and contains semantic information. The proposed method has engineering application value in the unmanned vehicles field.
标题:基于 Lidar 和单目视觉融合的 SLAM 和语义重建设计
摘要:无人车中最常用的两种传感器是单目相机和 Lidar。融合这两种传感器的优势是目前 SLAM 和语义分析的研究重点。本文提出了一种基于 Lidar 和单目视觉融合的改进的 SLAM 和语义重建方法。我们将语义图像与低分辨率的 3D Lidar 点云融合,并生成密集的语义深度图。通过视觉里程计,选择具有深度信息的 ORB 特征点来提高定位精度。我们的方法使用并行线程在定位无人车的同时聚合 3D 语义点云。在公开的 CityScapes 和 KITTI 视觉里程计数据集上进行了实验,结果表明,与 ORB-SLAM2 和 DynaSLAM 相比,我们的定位误差大约降低了 87%;与 DEMO 和 DVL-SLAM 相比,我们的定位精度在大多数序列中都有所提高。我们的 3D 重建质量优于 DynSLAM 且包含语义信息。该方法在无人车领域具有工程应用价值。