Suppr超能文献

基于投影滤波和K均值聚类体素化的球面点云目标拟合方法

Target Fitting Method for Spherical Point Clouds Based on Projection Filtering and K-Means Clustered Voxelization.

作者信息

Wang Zhe, Hu Jiacheng, Shi Yushu, Cai Jinhui, Pi Lei

机构信息

Key Laboratory of In-Situ Metrology, Ministry of Education, China Jiliang University, Hangzhou 310018, China.

National Institute of Metrology, Beijing 102200, China.

出版信息

Sensors (Basel). 2024 Sep 4;24(17):5762. doi: 10.3390/s24175762.

Abstract

Industrial computed tomography (CT) is widely used in the measurement field owing to its advantages such as non-contact and high precision. To obtain accurate size parameters, fitting parameters can be obtained rapidly by processing volume data in the form of point clouds. However, due to factors such as artifacts in the CT reconstruction process, many abnormal interference points exist in the point clouds obtained after segmentation. The classic least squares algorithm is easily affected by these points, resulting in significant deviation of the solution of linear equations from the normal value and poor robustness, while the random sample consensus (RANSAC) approach has insufficient fitting accuracy within a limited timeframe and the number of iterations. To address these shortcomings, we propose a spherical point cloud fitting algorithm based on projection filtering and K-Means clustering (PK-RANSAC), which strategically integrates and enhances these two methods to achieve excellent accuracy and robustness. The proposed method first uses RANSAC for rough parameter estimation, then corrects the deviation of the spherical center coordinates through two-dimensional projection, and finally obtains the spherical center point set by sampling and performing K-Means clustering. The largest cluster is weighted to obtain accurate fitting parameters. We conducted a comparative experiment using a three-dimensional ball-plate standard. The sphere center fitting deviation of PK-RANSAC was 1.91 μm, which is significantly better than RANSAC's value of 25.41 μm. The experimental results demonstrate that PK-RANSAC has higher accuracy and stronger robustness for fitting geometric parameters.

摘要

工业计算机断层扫描(CT)因其非接触、高精度等优点在测量领域得到广泛应用。为了获得准确的尺寸参数,可以通过处理点云形式的体数据快速获得拟合参数。然而,由于CT重建过程中的伪影等因素,分割后得到的点云中存在许多异常干扰点。经典的最小二乘法容易受到这些点的影响,导致线性方程组的解与正常值有显著偏差,鲁棒性较差,而随机抽样一致性(RANSAC)方法在有限的时间框架和迭代次数内拟合精度不足。为了解决这些缺点,我们提出了一种基于投影滤波和K均值聚类的球面点云拟合算法(PK-RANSAC),该算法战略性地整合并增强了这两种方法,以实现优异的精度和鲁棒性。所提出的方法首先使用RANSAC进行粗略的参数估计,然后通过二维投影校正球心坐标的偏差,最后通过采样和执行K均值聚类获得球心点集。对最大的聚类进行加权以获得准确的拟合参数。我们使用三维球板标准进行了对比实验。PK-RANSAC的球心拟合偏差为1.91μm,明显优于RANSAC的25.41μm。实验结果表明,PK-RANSAC在拟合几何参数方面具有更高的精度和更强的鲁棒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f41c/11398214/43511b5d3f5d/sensors-24-05762-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验