Suppr超能文献

基于物联网的无线系统,用于多设备治疗干预中的步态动力学监测。

IoT-Based Wireless System for Gait Kinetics Monitoring in Multi-Device Therapeutic Interventions.

机构信息

Graduate Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Macaíba 59280-000, RN, Brazil.

Graduate Program in Electrical and Computer Engineering, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil.

出版信息

Sensors (Basel). 2024 Sep 6;24(17):5799. doi: 10.3390/s24175799.

Abstract

This study presents an IoT-based gait analysis system employing insole pressure sensors to assess gait kinetics. The system integrates piezoresistive sensors within a left foot insole, with data acquisition managed using an ESP32 board that communicates via Wi-Fi through an MQTT IoT framework. In this initial protocol study, we conducted a comparative analysis using the Zeno system, supported by PKMAS as the gold standard, to explore the correlation and agreement of data obtained from the insole system. Four volunteers (two males and two females, aged 24-28, without gait disorders) participated by walking along a 10 m Zeno system path, equipped with pressure sensors, while wearing the insole system. Vertical ground reaction force (vGRF) data were collected over four gait cycles. The preliminary results indicated a strong positive correlation (r = 0.87) between the insole and the reference system measurements. A Bland-Altman analysis further demonstrated a mean difference of approximately (0.011) between the two systems, suggesting a minimal yet significant bias. These findings suggest that piezoresistive sensors may offer a promising and cost-effective solution for gait disorder assessment and monitoring. However, operational factors such as high temperatures and sensor placement within the footwear can introduce noise or unwanted signal activation. The communication framework proved functional and reliable during this protocol, with plans for future expansion to multi-device applications. It is important to note that additional validation studies with larger sample sizes are required to confirm the system's reliability and robustness for clinical and research applications.

摘要

本研究提出了一种基于物联网的步态分析系统,采用鞋垫压力传感器来评估步态动力学。该系统在左脚鞋垫内集成了压阻式传感器,使用 ESP32 板进行数据采集,通过 MQTT 物联网框架通过 Wi-Fi 进行通信。在这项初步的协议研究中,我们使用 Zeno 系统进行了对比分析,PKMAS 作为金标准,以探索从鞋垫系统获得的数据的相关性和一致性。四名志愿者(两名男性和两名女性,年龄 24-28 岁,无步态障碍)参与了研究,他们沿着装有压力传感器的 10 米 Zeno 系统路径行走,同时穿着鞋垫系统。在四个步态周期中收集垂直地面反作用力(vGRF)数据。初步结果表明,鞋垫和参考系统测量之间存在很强的正相关(r = 0.87)。Bland-Altman 分析进一步表明,两个系统之间的平均差异约为(0.011),表明存在微小但显著的偏差。这些发现表明,压阻式传感器可能为步态障碍评估和监测提供一种有前途且经济有效的解决方案。然而,操作因素,如高温和传感器在鞋内的放置位置,可能会引入噪声或不必要的信号激活。在本协议中,通信框架被证明是功能强大且可靠的,计划未来扩展到多设备应用。需要注意的是,需要进行更多具有更大样本量的验证研究,以确认该系统在临床和研究应用中的可靠性和稳健性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c613/11398167/02c883da378f/sensors-24-05799-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验