Suppr超能文献

利用智能鞋类通过深度学习检测老年人的行走行为

Deep Learning for Walking Behaviour Detection in Elderly People Using Smart Footwear.

作者信息

Aznar-Gimeno Rocío, Labata-Lezaun Gorka, Adell-Lamora Ana, Abadía-Gallego David, Del-Hoyo-Alonso Rafael, González-Muñoz Carlos

机构信息

Department of BigData and Cognitive Systems, Instituto Tecnológico de Aragón, ITAINNOVA, María de Luna 7-8, 50018 Zaragoza, Spain.

出版信息

Entropy (Basel). 2021 Jun 19;23(6):777. doi: 10.3390/e23060777.

Abstract

The increase in the proportion of elderly in Europe brings with it certain challenges that society needs to address, such as custodial care. We propose a scalable, easily modulated and live assistive technology system, based on a comfortable smart footwear capable of detecting walking behaviour, in order to prevent possible health problems in the elderly, facilitating their urban life as independently and safety as possible. This brings with it the challenge of handling the large amounts of data generated, transmitting and pre-processing that information and analysing it with the aim of obtaining useful information in real/near-real time. This is the basis of information theory. This work presents a complete system aiming at elderly people that can detect different user behaviours/events (sitting, standing without imbalance, standing with imbalance, walking, running, tripping) through information acquired from 20 types of sensor measurements (16 piezoelectric pressure sensors, one accelerometer returning reading for the 3 axis and one temperature sensor) and warn the relatives about possible risks in near-real time. For the detection of these events, a hierarchical structure of cascading binary models is designed and applied using artificial neural network (ANN) algorithms and deep learning techniques. The best models are achieved with convolutional layered ANN and multilayer perceptrons. The overall event detection performance achieves an average accuracy and area under the ROC curve of 0.84 and 0.96, respectively.

摘要

欧洲老年人口比例的增加带来了一些社会需要应对的挑战,比如监护护理。我们提出了一种可扩展、易于调节且具备实时辅助功能的技术系统,该系统基于一种能够检测行走行为的舒适智能鞋,旨在预防老年人可能出现的健康问题,尽可能独立且安全地便利他们的城市生活。这带来了处理大量生成数据、传输和预处理该信息并进行分析以实时/近实时获取有用信息的挑战。这是信息论的基础。这项工作展示了一个针对老年人的完整系统,该系统可以通过从20种类型的传感器测量(16个压电压力传感器、一个返回3轴读数的加速度计和一个温度传感器)获取的信息来检测不同的用户行为/事件(坐下、无失衡站立、有失衡站立、行走、跑步、绊倒),并近实时地向亲属警告可能的风险。为了检测这些事件,使用人工神经网络(ANN)算法和深度学习技术设计并应用了级联二元模型的分层结构。最佳模型通过卷积层ANN和多层感知器实现。整体事件检测性能的平均准确率和ROC曲线下面积分别达到了0.84和0.96。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5a5/8235668/790c4edff0b3/entropy-23-00777-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验