Suppr超能文献

使用机器学习和自然语言处理的癌症相关静脉血栓栓塞抗凝患者大出血预测模型

Prediction model for major bleeding in anticoagulated patients with cancer-associated venous thromboembolism using machine learning and natural language processing.

作者信息

Muñoz Martín Andrés J, Lecumberri Ramón, Souto Juan Carlos, Obispo Berta, Sanchez Antonio, Aparicio Jorge, Aguayo Cristina, Gutierrez David, García Palomo Andrés, Benavent Diego, Taberna Miren, Viñuela-Benéitez María Carmen, Arumi Daniel, Hernández-Presa Miguel Ángel

机构信息

Medical Oncology Service, Hospital General Universitario Gregorio Marañón Universidad Complutense, Madrid, Spain.

Hematology Service, Clínica Universidad de Navarra, Pamplona, Spain.

出版信息

Clin Transl Oncol. 2025 Apr;27(4):1816-1825. doi: 10.1007/s12094-024-03586-2. Epub 2024 Sep 14.

Abstract

PURPOSE

We developed a predictive model to assess the risk of major bleeding (MB) within 6 months of primary venous thromboembolism (VTE) in cancer patients receiving anticoagulant treatment. We also sought to describe the prevalence and incidence of VTE in cancer patients, and to describe clinical characteristics at baseline and bleeding events during follow-up in patients receiving anticoagulants.

METHODS

This observational, retrospective, and multicenter study used natural language processing and machine learning (ML), to analyze unstructured clinical data from electronic health records from nine Spanish hospitals between 2014 and 2018. All adult cancer patients with VTE receiving anticoagulants were included. Both clinically- and ML-driven feature selection was performed to identify MB predictors. Logistic regression (LR), decision tree (DT), and random forest (RF) algorithms were used to train predictive models, which were validated in a hold-out dataset and compared to the previously developed CAT-BLEED score.

RESULTS

Of the 2,893,108 cancer patients screened, in-hospital VTE prevalence was 5.8% and the annual incidence ranged from 2.7 to 3.9%. We identified 21,227 patients with active cancer and VTE receiving anticoagulants (53.9% men, median age of 70 years). MB events after VTE diagnosis occurred in 10.9% of patients within the first six months. MB predictors included: hemoglobin, metastasis, age, platelets, leukocytes, and serum creatinine. The LR, DT, and RF models had AUC-ROC (95% confidence interval) values of 0.60 (0.55, 0.65), 0.60 (0.55, 0.65), and 0.61 (0.56, 0.66), respectively. These models outperformed the CAT-BLEED score with values of 0.53 (0.48, 0.59).

CONCLUSIONS

Our study shows encouraging results in identifying anticoagulated patients with cancer-associated VTE who are at high risk of MB.

摘要

目的

我们开发了一种预测模型,以评估接受抗凝治疗的癌症患者在原发性静脉血栓栓塞(VTE)后6个月内发生大出血(MB)的风险。我们还试图描述癌症患者VTE的患病率和发病率,并描述接受抗凝治疗患者的基线临床特征和随访期间的出血事件。

方法

这项观察性、回顾性多中心研究使用自然语言处理和机器学习(ML),分析了2014年至2018年间来自九家西班牙医院电子健康记录中的非结构化临床数据。纳入所有接受抗凝治疗的成年VTE癌症患者。进行了临床和ML驱动的特征选择,以确定MB预测因素。使用逻辑回归(LR)、决策树(DT)和随机森林(RF)算法训练预测模型,并在一个留出的数据集中进行验证,并与之前开发的CAT-BLEED评分进行比较。

结果

在筛查的2893108例癌症患者中,住院VTE患病率为5.8%,年发病率在2.7%至3.9%之间。我们确定了21227例正在接受抗凝治疗的活动性癌症和VTE患者(男性占53.9%,中位年龄70岁)。VTE诊断后,10.9%的患者在头六个月内发生了MB事件。MB预测因素包括:血红蛋白、转移、年龄、血小板、白细胞和血清肌酐。LR、DT和RF模型的AUC-ROC(95%置信区间)值分别为0.60(0.55,0.65)、0.60(0.55,0.65)和0.61(0.56,0.66)。这些模型的表现优于CAT-BLEED评分,其值为0.53(0.48,0.59)。

结论

我们的研究在识别具有MB高风险的癌症相关VTE抗凝患者方面显示出令人鼓舞的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a30/12000191/c06e26e34d53/12094_2024_3586_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验