Suppr超能文献

对垃圾填埋场土壤的宏基因组分析揭示了一个参与塑料降解的多样微生物群落。

Metagenomic analysis of soil from landfill site reveals a diverse microbial community involved in plastic degradation.

机构信息

Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India.

Department of Biotechnology, Panjab University Chandigarh, India.

出版信息

J Hazard Mater. 2024 Dec 5;480:135804. doi: 10.1016/j.jhazmat.2024.135804. Epub 2024 Sep 10.

Abstract

In this study, we have investigated microbial communities structure and function using high throughput amplicon sequencing and whole metagenomic sequencing of DNA extracted from different depths of a plastic-laden landfill site. With diverse taxonomic groups inhabiting the plastic-rich soil, our study demonstrates the remarkable adaptability of microbes to use this new substrate as a carbon source. FTIR spectroscopic analysis of soil indicated degradation of plastic as perceived from the carbonyl index of 0.16, 0.72, and 0.44 at 0.6, 0.9 and 1.2 m depth, respectively. Similarly, water contact angles of 108.7 degree, 99.7 degree, 62.7 degree, and 77.8 degree of plastic pieces collected at 0.3, 0.6, 0.9, and 1.2 m depths respectively showed increased wettability and hydrophilicity of the plastic. Amplicon analysis of 16S and 18 S rRNA revealed a high abundance of several plastic-degrading bacterial groups, including Pseudomonas, Rhizobiales, Micrococcaceae, Chaetomium, Methylocaldum, Micromonosporaceae, Rhodothermaceae and fungi, including Trichoderma, Aspergillus, Candida at 0.9 m. The co-existence of specific microbial groups at different depths of landfill site indicates importance of bacterial and fungal interactions for plastic. Whole metagenome analysis of soil sample at 0.9 m depth revealed a high abundance of genes encoding enzymes that participate in the biodegradation of PVC, polyethylene, PET, and polyurethane. Curation of the pathways related to the degradation of these materials provided a blueprint for plastic biodegradation in this ecosystem. Altogether, our study has highlighted the importance of microbial cooperation for the biodegradation of pollutants. Our metagenome-based investigation supports the current perception that consortia of fungi-bacteria are preferable to axenic cultures for effective bioremediation of the environment.

摘要

在这项研究中,我们使用高通量扩增子测序和从塑料污染垃圾填埋场不同深度提取的 DNA 的全宏基因组测序,研究了微生物群落的结构和功能。由于有多种分类群栖息在富含塑料的土壤中,我们的研究表明微生物具有显著的适应性,可以将这种新基质用作碳源。土壤的傅里叶变换红外光谱分析表明,从 0.6、0.9 和 1.2 m 深度的塑料丰富土壤中分别检测到的 0.16、0.72 和 0.44 的羰基指数表明塑料发生了降解。同样,从 0.3、0.6、0.9 和 1.2 m 深度收集的塑料片的水接触角分别为 108.7 度、99.7 度、62.7 度和 77.8 度,表明塑料的润湿性和亲水性增加。16S 和 18S rRNA 的扩增子分析显示,几种具有高丰度的塑料降解细菌群,包括假单胞菌、根瘤菌、微球菌科、毛壳菌、甲基球菌科、微单胞菌科、热袍菌科和真菌,包括曲霉属、青霉属、假丝酵母属,在 0.9 m 处大量存在。在垃圾填埋场不同深度共存的特定微生物群表明细菌和真菌相互作用对塑料的重要性。0.9 m 深度土壤样本的全宏基因组分析显示,参与 PVC、聚乙烯、PET 和聚氨酯生物降解的酶的基因丰度很高。对这些材料降解途径的编目为该生态系统中的塑料生物降解提供了蓝图。总的来说,我们的研究强调了微生物合作对污染物生物降解的重要性。我们基于宏基因组的研究支持了当前的观点,即真菌-细菌共生体优于用于有效环境生物修复的纯培养物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验