Department of Automation, Tsinghua University, Beijing 100084, China; Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China.
Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518071, China.
Cell. 2024 Oct 17;187(21):6104-6122.e25. doi: 10.1016/j.cell.2024.08.026. Epub 2024 Sep 13.
A comprehensive understanding of physio-pathological processes necessitates non-invasive intravital three-dimensional (3D) imaging over varying spatial and temporal scales. However, huge data throughput, optical heterogeneity, surface irregularity, and phototoxicity pose great challenges, leading to an inevitable trade-off between volume size, resolution, speed, sample health, and system complexity. Here, we introduce a compact real-time, ultra-large-scale, high-resolution 3D mesoscope (RUSH3D), achieving uniform resolutions of 2.6 × 2.6 × 6 μm across a volume of 8,000 × 6,000 × 400 μm at 20 Hz with low phototoxicity. Through the integration of multiple computational imaging techniques, RUSH3D facilitates a 13-fold improvement in data throughput and an orders-of-magnitude reduction in system size and cost. With these advantages, we observed premovement neural activity and cross-day visual representational drift across the mouse cortex, the formation and progression of multiple germinal centers in mouse inguinal lymph nodes, and heterogeneous immune responses following traumatic brain injury-all at single-cell resolution, opening up a horizon for intravital mesoscale study of large-scale intercellular interactions at the organ level.
全面了解生理病理过程需要在不同的时空尺度上进行非侵入性的活体三维(3D)成像。然而,巨大的数据吞吐量、光学异质性、表面不规则性和光毒性带来了巨大的挑战,导致在体积大小、分辨率、速度、样本健康和系统复杂性之间不可避免地存在权衡。在这里,我们介绍了一种紧凑的实时、超大尺度、高分辨率的 3D 显微镜(RUSH3D),在 20Hz 下实现了 8000×6000×400μm 体积内 2.6×2.6×6μm 的均匀分辨率,同时具有低光毒性。通过整合多种计算成像技术,RUSH3D 使数据吞吐量提高了 13 倍,系统尺寸和成本降低了几个数量级。利用这些优势,我们观察到了小鼠皮层的运动前神经活动和跨日视觉代表性漂移、小鼠腹股沟淋巴结中多个生发中心的形成和进展,以及创伤性脑损伤后的异质性免疫反应——所有这些都达到了单细胞分辨率,为在器官水平上进行活体介观尺度的大规模细胞间相互作用研究开辟了新的视野。