Suppr超能文献

机器学习方法在物理治疗中的应用:临床应用的范围综述。

Machine learning methods in physical therapy: A scoping review of applications in clinical context.

机构信息

Physical Therapy Department, Instituto Federal do Rio de Janeiro (IFRJ), Rio de Janeiro, RJ, Brazil; School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, Canada; Pain in Motion Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium.

Physical Therapy Department, Instituto Federal do Rio de Janeiro (IFRJ), Rio de Janeiro, RJ, Brazil.

出版信息

Musculoskelet Sci Pract. 2024 Nov;74:103184. doi: 10.1016/j.msksp.2024.103184. Epub 2024 Sep 13.

Abstract

BACKGROUND

Machine learning (ML) efficiently processes large datasets, showing promise in enhancing clinical practice within physical therapy.

OBJECTIVE

The aim of this scoping review is to provide an overview of studies using ML approaches in clinical settings of physical therapy.

DATA SOURCES

A scoping review was performed in PubMed, EMBASE, PEDro, Cochrane, Web of Science, and Scopus.

SELECTION CRITERIA

We included studies utilizing ML methods. ML was defined as the utilization of computational systems to encode patterns and relationships, enabling predictions or classifications with minimal human interference.

DATA EXTRACTION AND DATA SYNTHESIS

Data were extracted regarding methods, data types, performance metrics, and model availability.

RESULTS

Forty-two studies were included. The majority were published after 2020 (n = 25). Fourteen studies (33.3%) were in the musculoskeletal physical therapy field, nine (21.4%) in neurological, and eight (19%) in sports physical therapy. We identified 44 different ML models, with random forest being the most used. Three studies reported on model availability. We identified several clinical applications for ML-based tools, including diagnosis (n = 14), prognosis (n = 7), treatment outcomes prediction (n = 7), clinical decision support (n = 5), movement analysis (n = 4), patient monitoring (n = 3), and personalized care plan (n = 2).

LIMITATION

Model performance metrics, costs, model interpretability, and explainability were not reported.

CONCLUSION

This scope review mapped the emerging landscape of machine learning applications in physical therapy. Despite the growing interest, the field still lacks high-quality studies on validation, model availability, and acceptability to advance from research to clinical practice.

摘要

背景

机器学习(ML)能够高效地处理大型数据集,有望增强物理治疗领域的临床实践。

目的

本综述旨在概述在物理治疗临床环境中使用 ML 方法的研究。

资料来源

在 PubMed、EMBASE、PEDro、Cochrane、Web of Science 和 Scopus 进行了范围综述。

选择标准

我们纳入了使用 ML 方法的研究。ML 被定义为利用计算系统来编码模式和关系,从而实现最小人工干预的预测或分类。

资料提取和综合

提取了关于方法、数据类型、性能指标和模型可用性的数据。

结果

共纳入 42 项研究。其中大多数发表于 2020 年后(n=25)。14 项研究(33.3%)属于肌肉骨骼物理治疗领域,9 项(21.4%)属于神经科,8 项(19%)属于运动物理治疗。我们确定了 44 种不同的 ML 模型,其中随机森林的使用最为广泛。有 3 项研究报告了模型的可用性。我们确定了 ML 工具的几个临床应用,包括诊断(n=14)、预后(n=7)、治疗效果预测(n=7)、临床决策支持(n=5)、运动分析(n=4)、患者监测(n=3)和个性化护理计划(n=2)。

局限性

未报告模型性能指标、成本、模型可解释性和可解释性。

结论

本综述描绘了机器学习在物理治疗中的应用新兴领域。尽管兴趣日益浓厚,但该领域仍缺乏关于验证、模型可用性和可接受性的高质量研究,以将研究推进到临床实践。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验