Geomatics Engineering Department, Civil Engineering Faculty, Istanbul Technical University, Istanbul, Türkiye.
Geomatics Engineering Department, Civil Engineering Faculty, Istanbul Technical University, Istanbul, Türkiye.
Mar Pollut Bull. 2024 Nov;208:116942. doi: 10.1016/j.marpolbul.2024.116942. Epub 2024 Sep 14.
This study hypothesizes that advanced machine learning (ML) models can more accurately predict certain critical water quality parameters in marine environments compared to conventional regression techniques. We specifically evaluated the spatio-temporal distribution of Chlorophyll-a (Chl-a) and Secchi Disk Depth (SDD) in the Gulf of Izmit using in-situ measurements and Sentinel-2 satellite imagery from October 2021 and 2022. Among the models tested, the Support Vector Regression (SVR) model showed better predictive performance, achieving the lowest RMSE for SDD (1.11-1.70 m) and Chl-a (1.16-4.97 mg/m) and the lowest MAE for SDD (0.86-1.43 m) and Chl-a (1.03-3.17 mg/m). Additionally, the study observed a shift from hypertrophic to eutrophic Chl-a conditions and from mesotrophic-eutrophic to oligotrophic SDD conditions between 2021 and 2022, aligning with SVR model predictions and in-situ observations. These findings underscore the potential of ML models to enhance the accuracy of water quality monitoring and management in marine ecosystems.
本研究假设,与传统回归技术相比,先进的机器学习(ML)模型可以更准确地预测海洋环境中的某些关键水质参数。我们特别使用 2021 年 10 月和 2022 年的现场测量和 Sentinel-2 卫星图像,评估了伊兹密特湾叶绿素-a(Chl-a)和水色盘深度(SDD)的时空分布。在测试的模型中,支持向量回归(SVR)模型显示出更好的预测性能,对 SDD(1.11-1.70 m)和 Chl-a(1.16-4.97 mg/m)的 RMSE 最低,对 SDD(0.86-1.43 m)和 Chl-a(1.03-3.17 mg/m)的 MAE 最低。此外,研究还观察到 2021 年至 2022 年间,Chl-a 从富营养化向营养过度转变,SDD 从中营养-富营养向贫营养转变,与 SVR 模型预测和现场观测一致。这些发现强调了 ML 模型在增强海洋生态系统水质监测和管理准确性方面的潜力。