Suppr超能文献

工程化IRES介导的无启动子胰岛素产生细胞可逆转高血糖。

Engineered IRES-mediated promoter-free insulin-producing cells reverse hyperglycemia.

作者信息

Li Yumin, Ahamed Younis Doulathunnisa, He Cong, Ni Chengming, Liu Rui, Zhou Yunting, Sun Zilin, Lin Hao, Xiao Zhongdang, Sun Bo

机构信息

State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China.

Department of Immunology, School of Medicine, UConn Health, Farmington, CT, United States.

出版信息

Front Endocrinol (Lausanne). 2024 Aug 30;15:1439351. doi: 10.3389/fendo.2024.1439351. eCollection 2024.

Abstract

BACKGROUND

Endogenous insulin supplementation is essential for individuals with type 1 diabetes (T1D). However, current treatments, including pancreas transplantation, insulin injections, and oral medications, have significant limitations. The development of engineered cells that can secrete endogenous insulin offers a promising new therapeutic strategy for type 1 diabetes (T1D). This approach could potentially circumvent autoimmune responses associated with the transplantation of differentiated β-cells or systemic delivery of viral vectors.

METHODS

We utilized CRISPR/Cas9 gene editing coupled with homology-directed repair (HDR) to precisely integrate a promoter-free EMCVIRES-insulin cassette into the 3' untranslated region (UTR) of the GAPDH gene in human HEK-293T cells. Subsequently quantified insulin expression levels in these engineered cells, the viability and functionality of the engineered cells when seeded on different cell vectors (GelMA and Cytopore I) were also assessed. Finally, we investigated the therapeutic potential of EMCVIRES-based insulin secretion circuits in reversing Hyperglycaemia in T1D mice.

RESULT

Our results demonstrate that HDR-mediated gene editing successfully integrated the IRES-insulin loop into the genome of HEK-293T cells, a non-endocrine cell line, enabling the expression of human-derived insulin. Furthermore, Cytopore I microcarriers facilitated cell attachment and proliferation during culture and enhanced cell survival post-transplantation. Transplantation of these cell-laden microcarriers into mice led to the development of a stable, fat-encapsulated structure. This structure exhibited the expression of the platelet-endothelial cell adhesion molecule CD31, and no significant immune rejection was observed throughout the experiment. Diabetic mice that received the cell carriers reversed hyperglycemia, and blood glucose fluctuations under simulated feeding stimuli were very similar to those of healthy mice.

CONCLUSION

In summary, our study demonstrates that Cytopore I microcarriers are biocompatible and promote long-term cell survival . The promoter-free EMCVIRES-insulin loop enables non-endocrine cells to secrete mature insulin, leading to a rapid reduction in glucose levels. We have presented a novel promoter-free genetic engineering strategy for insulin secretion and proposed an efficient cell transplantation method. Our findings suggest the potential to expand the range of cell sources available for the treatment of diabetes, offering new avenues for therapeutic interventions.

摘要

背景

内源性胰岛素补充对于1型糖尿病(T1D)患者至关重要。然而,目前的治疗方法,包括胰腺移植、胰岛素注射和口服药物,都有显著局限性。能够分泌内源性胰岛素的工程细胞的开发为1型糖尿病(T1D)提供了一种有前景的新治疗策略。这种方法可能规避与分化β细胞移植或病毒载体全身递送相关的自身免疫反应。

方法

我们利用CRISPR/Cas9基因编辑结合同源定向修复(HDR),将无启动子的EMCVIRES-胰岛素盒精确整合到人HEK-293T细胞中GAPDH基因的3'非翻译区(UTR)。随后对这些工程细胞中的胰岛素表达水平进行定量,还评估了将工程细胞接种到不同细胞载体(GelMA和Cytopore I)上时工程细胞的活力和功能。最后,我们研究了基于EMCVIRES的胰岛素分泌回路在逆转T1D小鼠高血糖中的治疗潜力。

结果

我们的结果表明,HDR介导的基因编辑成功地将IRES-胰岛素环整合到非内分泌细胞系HEK-293T细胞的基因组中,使人源胰岛素得以表达。此外,Cytopore I微载体在培养过程中促进细胞附着和增殖,并在移植后提高细胞存活率。将这些负载细胞的微载体移植到小鼠体内导致形成稳定的、脂肪包裹的结构。该结构表现出血小板内皮细胞粘附分子CD31的表达,并且在整个实验过程中未观察到明显的免疫排斥。接受细胞载体的糖尿病小鼠血糖恢复正常,在模拟进食刺激下的血糖波动与健康小鼠非常相似。

结论

总之,我们的研究表明Cytopore I微载体具有生物相容性并能促进细胞长期存活。无启动子的EMCVIRES-胰岛素环使非内分泌细胞能够分泌成熟胰岛素,导致血糖水平迅速降低。我们提出了一种用于胰岛素分泌的新型无启动子基因工程策略,并提出了一种有效的细胞移植方法。我们的研究结果表明有可能扩大可用于治疗糖尿病的细胞来源范围,为治疗干预提供新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a86b/11392723/7c823ad52f32/fendo-15-1439351-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验