Crincoli Emanuele, Parolini Barbara, Catania Fiammetta, Savastano Alfonso, Savastano Maria Cristina, Rizzo Clara, Kilian Raphael, Matello Veronika, Allegrini Davide, Romano Mario R, Rizzo Stanislao
Ophthalmology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
Eyecare Clinic, Crystal Palace, Brescia, Italy.
Ophthalmol Sci. 2024 Apr 13;4(6):100529. doi: 10.1016/j.xops.2024.100529. eCollection 2024 Nov-Dec.
To use artificial intelligence to identify imaging biomarkers for anatomic and functional progression of lamellar macular hole (LMH) and elaborate a deep learning (DL) model based on OCT and OCT angiography (OCTA) for prediction of visual acuity (VA) loss in untreated LMHs.
Multicentric retrospective observational study.
Patients aged >18 years diagnosed with idiopathic LMHs with availability of good quality OCT and OCTA acquisitions at baseline and a follow-up >2 years were recruited.
A DL model based on soft voting of 2 separate models (OCT and OCTA-based respectively) was trained for identification of cases with VA loss >5 ETDRS letters (attributable to LMH progression only) during a 2-year follow-up. Biomarkers of anatomic and functional progression of LMH were evaluated with regression analysis, feature learning (support vector machine [SVM] model), and visualization maps.
Ellipsoid zone (EZ) damage, volumetric tissue loss (TL), vitreopapillary adhesion (VPA), epiretinal proliferation, central macular thickness (CMT), parafoveal vessel density (VD) and vessel length density (VLD) of retinal capillary plexuses, choriocapillaris (CC), and flow deficit density (FDD).
Functionally progressing LMHs (VA-PROG group, 41/139 eyes [29.5%]) showed higher prevalence of EZ damage, higher volumetric TL, higher prevalence of VPA, lower superficial capillary plexus (SCP), VD and VLD, and higher CC FDD compared with functionally stable LMHs (VA-STABLE group, 98/139 eyes [70.5%]). The DL and SVM models showed 92.5% and 90.5% accuracy, respectively. The best-performing features in the SVM were EZ damage, TL, CC FDD, and parafoveal SCP VD. Epiretinal proliferation and lower CMT were risk factors for anatomic progression only.
Deep learning can accurately predict functional progression of untreated LMHs over 2 years. The use of AI might improve our understanding of the natural course of retinal diseases. The integrity of CC and SCP might play an important role in the progression of LMHs.
The authors have no proprietary or commercial interest in any materials discussed in this article.
利用人工智能识别板层黄斑裂孔(LMH)解剖和功能进展的影像学生物标志物,并构建基于光学相干断层扫描(OCT)和光学相干断层扫描血管造影(OCTA)的深度学习(DL)模型,以预测未经治疗的LMH患者的视力(VA)丧失情况。
多中心回顾性观察研究。
招募年龄>18岁、诊断为特发性LMH、基线时可获得高质量OCT和OCTA图像且随访时间>2年的患者。
训练一个基于两个独立模型(分别基于OCT和OCTA)软投票的DL模型,用于识别在2年随访期间VA丧失>5个早期糖尿病性视网膜病变研究组(ETDRS)字母(仅归因于LMH进展)的病例。通过回归分析、特征学习(支持向量机[SVM]模型)和可视化图谱评估LMH解剖和功能进展的生物标志物。
椭圆体带(EZ)损伤、体积性组织丢失(TL)、玻璃体乳头粘连(VPA)、视网膜前增殖、中心黄斑厚度(CMT)、黄斑旁视网膜毛细血管丛、脉络膜毛细血管(CC)的血管密度(VD)和血管长度密度(VLD)以及血流缺失密度(FDD)。
与功能稳定的LMH(VA-STABLE组,98/139眼[70.5%])相比,功能进展性LMH(VA-PROG组,41/139眼[29.5%])的EZ损伤患病率更高、体积性TL更高、VPA患病率更高、浅表毛细血管丛(SCP)、VD和VLD更低,以及CC FDD更高。DL模型和SVM模型的准确率分别为92.5%和90.5%。SVM中表现最佳的特征为EZ损伤、TL、CC FDD和黄斑旁SCP VD。视网膜前增殖和较低的CMT仅是解剖学进展的危险因素。
深度学习可准确预测未经治疗的LMH在2年内的功能进展。人工智能的应用可能会增进我们对视网膜疾病自然病程的理解。CC和SCP的完整性可能在LMH的进展中起重要作用。
作者对本文讨论的任何材料均无所有权或商业利益。