Durmaz Engin Ceren, Gokkan Mahmut Ozan, Koksaldi Seher, Kayabasi Mustafa, Besenk Ufuk, Selver Mustafa Alper, Grzybowski Andrzej
Department of Ophthalmology, Izmir Democracy University Buca Seyfi Demirsoy Education and Research Hospital, Izmir 35390, Turkey.
Izmir Health Technologies Development and Accelerator (BioIzmir), Dokuz Eylul University, Izmir 35330, Turkey.
J Clin Med. 2025 Apr 17;14(8):2774. doi: 10.3390/jcm14082774.
The vitreomacular interface (VMI) encompasses a group of retinal disorders that significantly impact vision, requiring accurate classification for effective management. This study aims to compare the effectiveness of an expert-designed custom deep learning (DL) model and a code free Auto Machine Learning (ML) model in classifying optical coherence tomography (OCT) images of VMI disorders. A balanced dataset of OCT images across five classes-normal, epiretinal membrane (ERM), idiopathic full-thickness macular hole (FTMH), lamellar macular hole (LMH), and vitreomacular traction (VMT)-was used. The expert-designed model combined ResNet-50 and EfficientNet-B0 architectures with Monte Carlo cross-validation. The AutoML model was created on Google Vertex AI, which handled data processing, model selection, and hyperparameter tuning automatically. Performance was evaluated using average precision, precision, and recall metrics. The expert-designed model achieved an overall balanced accuracy of 95.97% and a Matthews Correlation Coefficient (MCC) of 94.65%. Both models attained 100% precision and recall for normal cases. For FTMH, the expert model reached perfect precision and recall, while the AutoML model scored 97.8% average precision, and 97.4% recall. In VMT detection, the AutoML model showed 99.5% average precision with a slightly lower recall of 94.7% compared to the expert model's 95%. For ERM, the expert model achieved 95% recall, while the AutoML model had higher precision at 93.9% but a lower recall of 79.5%. In LMH classification, the expert model exhibited 95% precision, compared to 72.3% for the AutoML model, with similar recall for both (88% and 87.2%, respectively). While the AutoML model demonstrated strong performance, the expert-designed model achieved superior accuracy across certain classes. AutoML platforms, although accessible to healthcare professionals, may require further advancements to match the performance of expert-designed models in clinical applications.
玻璃体黄斑界面(VMI)包含一组对视力有显著影响的视网膜疾病,需要进行准确分类以实现有效管理。本研究旨在比较专家设计的定制深度学习(DL)模型和无代码自动机器学习(ML)模型在对VMI疾病的光学相干断层扫描(OCT)图像进行分类时的有效性。使用了一个包含五类(正常、视网膜前膜(ERM)、特发性全层黄斑裂孔(FTMH)、板层黄斑裂孔(LMH)和玻璃体黄斑牵引(VMT))的OCT图像平衡数据集。专家设计的模型将ResNet-50和EfficientNet-B0架构与蒙特卡罗交叉验证相结合。自动机器学习模型是在谷歌Vertex AI上创建的,它能自动处理数据处理、模型选择和超参数调整。使用平均精度、精度和召回率指标来评估性能。专家设计的模型总体平衡准确率达到95.97%,马修斯相关系数(MCC)为94.65%。两种模型在正常病例上的精度和召回率均达到100%。对于FTMH,专家模型达到了完美的精度和召回率,而自动机器学习模型的平均精度为97.8%,召回率为97.4%。在VMT检测中,自动机器学习模型的平均精度为99.5%,召回率略低于专家模型的95%,为94.7%。对于ERM,专家模型的召回率为95%,而自动机器学习模型的精度较高,为93.9%,但召回率较低,为79.5%。在LMH分类中,专家模型的精度为95%,而自动机器学习模型为72.3%,两者的召回率相似(分别为88%和87.2%)。虽然自动机器学习模型表现出强大的性能,但专家设计的模型在某些类别上实现了更高的准确率。自动机器学习平台虽然医疗保健专业人员可以使用,但可能需要进一步改进,以在临床应用中与专家设计的模型性能相匹配。