Suppr超能文献

解锁生物医学数据共享:一种通过数字孪生和人工智能实现开放健康科学的结构化方法。

Unlocking biomedical data sharing: A structured approach with digital twins and artificial intelligence (AI) for open health sciences.

作者信息

Jean-Quartier Claire, Stryeck Sarah, Thien Alexander, Vrella Burim, Kleinschuster Jeremias, Spreitzer Emil, Wali Mojib, Mueller Heimo, Holzinger Andreas, Jeanquartier Fleur

机构信息

Research Data Management, Graz University of Technology, Graz, Austria.

Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Austria.

出版信息

Digit Health. 2024 Sep 5;10:20552076241271769. doi: 10.1177/20552076241271769. eCollection 2024 Jan-Dec.

Abstract

OBJECTIVE

Data sharing promotes the scientific progress. However, not all data can be shared freely due to privacy issues. This work is intended to foster FAIR sharing of sensitive data exemplary in the biomedical domain, via an integrated computational approach for utilizing and enriching individual datasets by scientists without coding experience.

METHODS

We present an in silico pipeline for openly sharing controlled materials by generating synthetic data. Additionally, it addresses the issue of inexperience to computational methods in a non-IT-affine domain by making use of a cyberinfrastructure that runs and enables sharing of computational notebooks without the need of local software installation. The use of a digital twin based on cancer datasets serves as exemplary use case for making biomedical data openly available. Quantitative and qualitative validation of model output as well as a study on user experience are conducted.

RESULTS

The metadata approach describes generalizable descriptors for computational models, and outlines how to profit from existing data resources for validating computational models. The use of a virtual lab book cooperatively developed using a cloud-based data management and analysis system functions as showcase enabling easy interaction between users. Qualitative testing revealed a necessity for comprehensive guidelines furthering acceptance by various users.

CONCLUSION

The introduced framework presents an integrated approach for data generation and interpolating incomplete data, promoting Open Science through reproducibility of results and methods. The system can be expanded from the biomedical to any other domain while future studies integrating an enhanced graphical user interface could increase interdisciplinary applicability.

摘要

目的

数据共享促进科学进步。然而,由于隐私问题,并非所有数据都能自由共享。这项工作旨在通过一种综合计算方法,促进生物医学领域敏感数据的公平共享,使没有编码经验的科学家能够利用和丰富单个数据集。

方法

我们提出了一种通过生成合成数据来公开共享受控材料的计算机模拟流程。此外,它通过利用一种网络基础设施来解决非信息技术相关领域中对计算方法缺乏经验的问题,该基础设施运行并实现计算笔记本的共享,而无需在本地安装软件。基于癌症数据集的数字孪生的使用作为使生物医学数据公开可用的示例用例。对模型输出进行了定量和定性验证以及用户体验研究。

结果

元数据方法描述了计算模型的可通用描述符,并概述了如何从现有数据资源中受益以验证计算模型。使用通过基于云的数据管理和分析系统协同开发的虚拟实验室手册作为展示,实现了用户之间的轻松交互。定性测试表明需要全面的指南以促进不同用户的接受。

结论

所引入的框架提出了一种用于数据生成和插补不完整数据的综合方法,通过结果和方法的可重复性促进开放科学。该系统可以从生物医学领域扩展到任何其他领域,而未来整合增强图形用户界面的研究可能会增加跨学科适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7551/11394355/4e9ade66f378/10.1177_20552076241271769-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验