Suppr超能文献

一种基于C-TIRADS联合剪切波弹性成像(SWE)预测贝塞斯达I类甲状腺结节的模型。

A model based on C-TIRADS combined with SWE for predicting Bethesda I thyroid nodules.

作者信息

Wei An, Tang Yu-Long, Tang Shi-Chu, Zhang Xian-Ya, Ren Jia-Yu, Shi Long, Cui Xin-Wu, Zhang Chao-Xue

机构信息

Department of Ultrasound, The First Affiliated Hospital of Anhui Medical University, Hefei, China.

Department of Ultrasound, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, China.

出版信息

Front Oncol. 2024 Aug 30;14:1421088. doi: 10.3389/fonc.2024.1421088. eCollection 2024.

Abstract

OBJECTIVES

This study aimed to explore the performance of a model based on Chinese Thyroid Imaging Reporting and Data Systems (C-TIRADS), clinical characteristics, and shear wave elastography (SWE) for the prediction of Bethesda I thyroid nodules before fine needle aspiration (FNA).

MATERIALS AND METHODS

A total of 267 thyroid nodules from 267 patients were enrolled. Ultrasound and SWE were performed for all nodules before FNA. The nodules were scored according to the 2020 C-TIRADS, and the ultrasound and SWE characteristics of Bethesda I and non-I thyroid nodules were compared. The independent predictors were determined by univariate analysis and multivariate logistic regression analysis. A predictive model was established based on independent predictors, and the sensitivity, specificity, and area under the curve (AUC) of the independent predictors were compared with that of the model.

RESULTS

Our study found that the maximum diameter of nodules that ranged from 15 to 20 mm, the C-TIRADS category <4C, and <52.5 kPa were independent predictors for Bethesda I thyroid nodules. Based on multiple logistic regression, a predictive model was established: Logit (p) = -3.491 + 1.630 × maximum diameter + 1.719 × C-TIRADS category + 1.046 × (kPa). The AUC of the model was 0.769 (95% CI: 0.700-0.838), which was significantly higher than that of the independent predictors alone.

CONCLUSION

We developed a predictive model for predicting Bethesda I thyroid nodules. It might be beneficial to the clinical optimization of FNA strategy in advance and to improve the accurate diagnostic rate of the first FNA, reducing repeated FNA.

摘要

目的

本研究旨在探讨基于中国甲状腺影像报告和数据系统(C-TIRADS)、临床特征及剪切波弹性成像(SWE)的模型在细针穿刺活检(FNA)前预测甲状腺影像报告和数据系统I类甲状腺结节的性能。

材料与方法

共纳入267例患者的267个甲状腺结节。在FNA前对所有结节进行超声和SWE检查。根据2020版C-TIRADS对结节进行评分,并比较甲状腺影像报告和数据系统I类及非I类甲状腺结节的超声和SWE特征。通过单因素分析和多因素逻辑回归分析确定独立预测因素。基于独立预测因素建立预测模型,并将独立预测因素的敏感性、特异性和曲线下面积(AUC)与该模型进行比较。

结果

我们的研究发现,直径为15至20 mm的结节、C-TIRADS分类<4C以及<52.5 kPa是甲状腺影像报告和数据系统I类甲状腺结节的独立预测因素。基于多因素逻辑回归,建立了一个预测模型:Logit(p)=-3.491 + 1.630×最大直径 + 1.719×C-TIRADS分类 + 1.046×(kPa)。该模型的AUC为0.769(95%CI:0.700 - 0.838),显著高于单独的独立预测因素。

结论

我们开发了一种预测甲状腺影像报告和数据系统I类甲状腺结节的预测模型。这可能有利于提前对FNA策略进行临床优化,并提高首次FNA的准确诊断率,减少重复FNA。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5927/11393783/8219e01ad53b/fonc-14-1421088-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验