Suppr超能文献

主题追踪器 - 一种用于PubMed数据文本挖掘的先进软件管道:弥合现成工具与基于代码的方法之间的差距。

TopicTracker - An advanced software pipeline for text mining on PubMed data: Bridging the gap between off-the-shelf tools and code based approaches.

作者信息

Spitale Giovanni, Germani Federico, Biller-Andorno Nikola

机构信息

Institute of Biomedical Ethics and History of Medicine, University of Zurich, Zurich, Switzerland.

Institute for Biomedical Ethics and History of Medicine (IBME), Winterthurerstrasse 30, 8006, Zürich, CH, Switzerland.

出版信息

Heliyon. 2024 Aug 15;10(17):e36351. doi: 10.1016/j.heliyon.2024.e36351. eCollection 2024 Sep 15.

Abstract

BACKGROUND

The ever-increasing volume of academic literature necessitates efficient and sophisticated tools for researchers to analyze, interpret, and uncover trends. Traditional search methods, while valuable, often fail to capture the nuance and interconnectedness of vast research domains.

RESULTS

TopicTracker, a novel software tool, addresses this gap by providing a comprehensive solution from querying PubMed databases to creating intricate semantic network maps. Through its functionalities, users can systematically search for desired literature, analyze trends, and visually represent co-occurrences in a given field. Our case studies, including support for the WHO on ethical considerations in infodemic management and mapping the evolution of ethics pre- and post-pandemic, underscore the tool's applicability and precision.

CONCLUSIONS

TopicTracker represents a significant advancement in academic research tools for text mining. While it has its limitations, primarily tied to its alignment with PubMed, its benefits far outweigh the constraints. As the landscape of research continues to expand, tools like TopicTracker may be instrumental in guiding scholars in their pursuit of knowledge, ensuring they navigate the large amount of literature with clarity and precision.

摘要

背景

学术文献数量不断增加,这就需要为研究人员提供高效且先进的工具来进行分析、解读并发现趋势。传统的搜索方法虽然有价值,但往往无法捕捉到广阔研究领域的细微差别和内在联系。

结果

TopicTracker是一款新颖的软件工具,它通过提供从查询PubMed数据库到创建复杂语义网络图的全面解决方案来弥补这一差距。通过其功能,用户可以系统地搜索所需文献、分析趋势,并直观呈现给定领域中的共现情况。我们的案例研究,包括为世界卫生组织提供关于信息疫情管理中伦理考量的支持以及描绘疫情前后伦理观念的演变,突出了该工具的适用性和精确性。

结论

TopicTracker代表了文本挖掘学术研究工具的重大进步。虽然它有局限性,主要与它与PubMed的关联有关,但其优点远远超过了这些限制。随着研究领域不断扩展,像TopicTracker这样的工具可能有助于指导学者追求知识,确保他们清晰、精确地驾驭大量文献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9015/11399583/21b36c811e47/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验