Saleh Amr H, Borhan Ghazal, Goujon Florent, Devémy Julien, Dequidt Alain, Malfreyt Patrice, Sahihi Mehdi
, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France.
ACS Omega. 2024 Aug 26;9(36):38054-38065. doi: 10.1021/acsomega.4c05044. eCollection 2024 Sep 10.
Protein adsorption on material surfaces plays a key role in the biocompatibility of medical devices. Therefore, understanding the complex interplay of physicochemical factors driving this kind of biofouling is paramount for advancing biomaterial design. In this study, we investigated the interaction of the most prominent plasma proteins with polyvinyl chloride (PVC) as one of the ubiquitous materials in medical devices. Through molecular docking, we identified human serum albumin (HSA) as a plasma protein with the highest affinity for adsorption onto the PVC surface with the binding energy of -25.9 kJ mol. Subsequently, utilizing triplicate molecular dynamics (MD) simulations (0.5 μs each), we quantitatively analyzed the interactions between HSA and PVC, probing potential structural changes in the protein upon adsorption. Our findings revealed that water-mediated hydrogen bonds and van der Waals forces are key contributors in stabilizing HSA onto the surface of PVC without significant alteration to its secondary and tertiary structures. The observed distribution of water molecules further highlights the importance of the hydration layer in facilitating and modulating protein-polymer interactions. We further evaluated the thermodynamic properties governing the adsorption process by calculating the potential of mean force (PMF) along the direction normal to the surface. The computed Gibbs free energy of adsorption at 300 K (-507.4 kJ/mol) indicated a thermodynamically favored and spontaneous process. Moreover, our investigations across different temperatures (290 to 310 K) consistently showed an enthalpy-driven adsorption process.
蛋白质在材料表面的吸附在医疗设备的生物相容性中起着关键作用。因此,了解驱动这种生物污染的物理化学因素之间的复杂相互作用对于推进生物材料设计至关重要。在本研究中,我们研究了最主要的血浆蛋白与聚氯乙烯(PVC)(作为医疗设备中普遍存在的材料之一)之间的相互作用。通过分子对接,我们确定人血清白蛋白(HSA)是对PVC表面具有最高吸附亲和力的血浆蛋白,结合能为 -25.9 kJ/mol。随后,利用三重分子动力学(MD)模拟(每次0.5 μs),我们定量分析了HSA与PVC之间的相互作用,探究吸附后蛋白质的潜在结构变化。我们的研究结果表明,水介导的氢键和范德华力是将HSA稳定在PVC表面的关键因素,且其二级和三级结构无明显改变。观察到的水分子分布进一步突出了水合层在促进和调节蛋白质 - 聚合物相互作用中的重要性。我们通过计算沿垂直于表面方向的平均力势(PMF)进一步评估了控制吸附过程的热力学性质。在300 K时计算得到的吸附吉布斯自由能为 -507.4 kJ/mol,表明这是一个热力学上有利的自发过程。此外,我们在不同温度(290至310 K)下的研究一致显示这是一个焓驱动的吸附过程。