Suppr超能文献

区块链背景下基于粒子群优化神经网络的虚拟电厂分布式调度策略

Distributed Scheduling Strategy of Virtual Power Plant Using the Particle Swarm Optimization Neural Network under Blockchain Background.

作者信息

Lu Changchang, Chen Sijie

机构信息

College of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

出版信息

Comput Intell Neurosci. 2022 Sep 13;2022:3222249. doi: 10.1155/2022/3222249. eCollection 2022.

Abstract

Large-scale and widely dispersed distributed energy resource (DER) can be gathered by a virtual power plant (VPP) in a given area, and its parameters can be combined into a single external operation profile. Each distributed energy source in the VPP has a complete backup of the critical information for the entire network because it is a node of blockchain. The distribution network can be accessed by DER freely and adaptable under the scientific management of the VPP, and it can offer the system high-reliability, high-quality, and high-security power services. An energy blockchain network model based on particle swarm optimization (PSO) to optimise the neural network is proposed in this paper as a solution to the issues with the current VPP models. This will enable distributed dispatching of the VPP and reasonable load distribution among units. According to the simulation results, this algorithm's error is minimal and its accuracy can reach 94.98 percent. This model can more accurately capture demand-side real-time information, which benefits VPP's stable scheduling with a welcoming environment and transparent information. It also enhances the system's data security and storage security. This system can successfully address the issues of subject-to-subject mistrust and high information interaction costs in the VPP.

摘要

在给定区域内,虚拟电厂(VPP)可以收集大规模且广泛分散的分布式能源资源(DER),并将其参数整合为单一的外部运行曲线。由于VPP中的每个分布式能源都是区块链的一个节点,因此它拥有整个网络关键信息的完整备份。在VPP的科学管理下,分布式能源可以自由且适应性地接入配电网,并能为系统提供高可靠性、高质量和高安全性的电力服务。本文提出了一种基于粒子群优化(PSO)来优化神经网络的能源区块链网络模型,以解决当前VPP模型存在的问题。这将实现VPP的分布式调度以及各单元间的合理负荷分配。根据仿真结果,该算法的误差最小,准确率可达94.98%。该模型能够更准确地获取需求侧实时信息,有利于VPP在良好环境和透明信息下进行稳定调度。它还增强了系统的数据安全和存储安全。该系统能够成功解决VPP中主体间不信任和信息交互成本高的问题。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验