Suppr超能文献

用于调节微生物相互作用和生化反应的纳米多孔膜的制备

Fabrication of nanoporous membranes for tuning microbial interactions and biochemical reactions.

作者信息

Shankles Peter G, Timm Andrea C, Doktycz Mitchel J, Retterer Scott T

机构信息

Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831; The Center for Nanophase Material Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831; and The Bredesen Center, The University of Tennessee , Knoxville, Tennessee 37996.

Biosciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831.

出版信息

J Vac Sci Technol B Nanotechnol Microelectron. 2015 Nov;33(6):06FM03. doi: 10.1116/1.4932671. Epub 2015 Oct 21.

Abstract

New strategies for combining conventional photo- and soft-lithographic techniques with high-resolution patterning and etching strategies are needed in order to produce multiscale fluidic platforms that address the full range of functional scales seen in complex biological and chemical systems. The smallest resolution required for an application often dictates the fabrication method used. Micromachining and micropowder blasting yield higher throughput, but lack the resolution needed to fully address biological and chemical systems at the cellular and molecular scales. In contrast, techniques such as electron beam lithography or nanoimprinting allow nanoscale resolution, but are traditionally considered costly and slow. Other techniques such as photolithography or soft lithography have characteristics between these extremes. Combining these techniques to fabricate multiscale or hybrid fluidics allows fundamental biological and chemical questions to be answered. In this study, a combination of photolithography and electron beam lithography are used to produce two multiscale fluidic devices that incorporate porous membranes into complex fluidic networks in order to control the flow of energy, information, and materials in chemical form. In the first device, materials and energy were used to support chemical reactions. A nanoporous membrane fabricated with e-beam lithography separates two parallel, serpentine channels. Photolithography was used to pattern microfluidic channels around the membrane. The pores were written at 150 nm and reduced in size with silicon dioxide deposition from plasma enhanced chemical vapor deposition and atomic layer deposition. Using this method, the molecular weight cutoff of the membrane can be adapted to the system of interest. In the second approach, photolithography was used to fabricate 200 nm thin pores. The pores confined microbes and allowed energy replenishment from a media perfusion channel. The same device can be used for study of intercellular communication via the secretion and uptake of signal molecules. Pore size was tested with 750 nm fluorescent polystyrene beads and fluorescein dye. The 200 nm polydimethylsiloxane pores were shown to be robust enough to hold 750 nm beads while under pressure, but allow fluorescein to diffuse across the barrier. Further testing showed that extended culture of bacteria within the chambers was possible. These two examples show how lithographically defined porous membranes can be adapted to two unique situations and used to tune the flow of chemical energy, materials, and information within a microfluidic network.

摘要

为了制造出能应对复杂生物和化学系统中所有功能尺度的多尺度流体平台,需要将传统光刻技术与软光刻技术相结合,并采用高分辨率图案化和蚀刻策略的新方法。应用所需的最小分辨率通常决定了所使用的制造方法。微加工和微粉喷砂可实现更高的通量,但缺乏在细胞和分子尺度上全面应对生物和化学系统所需的分辨率。相比之下,电子束光刻或纳米压印等技术可实现纳米级分辨率,但传统上被认为成本高且速度慢。光刻或软光刻等其他技术则介于这两种极端情况之间。将这些技术结合起来制造多尺度或混合流体装置,有助于回答基本的生物和化学问题。在本研究中,光刻技术与电子束光刻技术相结合,制造了两种多尺度流体装置,这些装置将多孔膜整合到复杂的流体网络中,以控制能量、信息和化学形式的物质的流动。在第一个装置中,物质和能量被用于支持化学反应。用电子束光刻制造的纳米多孔膜将两条平行的蛇形通道分隔开。光刻技术用于在膜周围制作微流体通道的图案。这些孔的尺寸为150纳米,通过等离子体增强化学气相沉积和原子层沉积法沉积二氧化硅,使其尺寸减小。使用这种方法,膜的截留分子量可以根据目标系统进行调整。在第二种方法中,光刻技术用于制造200纳米厚的细孔。这些孔可限制微生物,并允许从介质灌注通道补充能量。同一装置可用于通过信号分子的分泌和摄取来研究细胞间通讯。用750纳米的荧光聚苯乙烯珠和荧光素染料测试了孔径。结果表明,200纳米的聚二甲基硅氧烷孔在受压时足够坚固,能够容纳750纳米的珠子,但允许荧光素扩散穿过屏障。进一步的测试表明,在小室内对细菌进行长时间培养是可行的。这两个例子展示了光刻定义的多孔膜如何能适用于两种独特的情况,并用于调节微流体网络内化学能量、物质和信息的流动。

相似文献

1
Fabrication of nanoporous membranes for tuning microbial interactions and biochemical reactions.
J Vac Sci Technol B Nanotechnol Microelectron. 2015 Nov;33(6):06FM03. doi: 10.1116/1.4932671. Epub 2015 Oct 21.
2
Multiplexed Microfluidic Platform for Parallel Bacterial Chemotaxis Assays.
Bio Protoc. 2024 Sep 5;14(17):e5062. doi: 10.21769/BioProtoc.5062.
3
Nanostructured silicon membranes for control of molecular transport.
J Vac Sci Technol B Nanotechnol Microelectron. 2010 Nov;28(6):C6PC6P48-C6PC6P52. doi: 10.1116/1.3518911. Epub 2010 Dec 2.
4
The fabrication of tunable nanoporous oxide surfaces by block copolymer lithography and atomic layer deposition.
Nanotechnology. 2011 Aug 19;22(33):335303. doi: 10.1088/0957-4484/22/33/335303.
5
Molecular transport through nanoporous silicon nitride membranes produced from self-assembling block copolymers.
Nanoscale. 2012 Sep 28;4(19):5880-6. doi: 10.1039/c2nr31498c. Epub 2012 Aug 17.
6
High-Resolution Three-Dimensional Sculpting of Two-Dimensional Graphene Oxide by E-Beam Direct Write.
ACS Appl Mater Interfaces. 2020 Sep 2;12(35):39595-39601. doi: 10.1021/acsami.0c11053. Epub 2020 Aug 21.
7
Controlled Patterning of Vertical Silicon Structures Using Polymer Lithography and Wet Chemical Etching.
J Nanosci Nanotechnol. 2015 Jun;15(6):4522-9. doi: 10.1166/jnn.2015.9780.
8
Nanoskiving: a new method to produce arrays of nanostructures.
Acc Chem Res. 2008 Dec;41(12):1566-77. doi: 10.1021/ar700194y.
9
Lifetime and Stability of Silicon Nitride Nanopores and Nanopore Arrays for Ionic Measurements.
ACS Nano. 2020 Jun 23;14(6):6715-6728. doi: 10.1021/acsnano.9b09964. Epub 2020 Apr 27.
10
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.

引用本文的文献

1
Nanofabrication Techniques for Enhancing Plant-Microbe Interactions in Sustainable Agriculture.
Nanomaterials (Basel). 2025 Jul 14;15(14):1086. doi: 10.3390/nano15141086.
2
Increasing access to microfluidics for studying fungi and other branched biological structures.
Fungal Biol Biotechnol. 2019 Jun 10;6:1. doi: 10.1186/s40694-019-0071-z. eCollection 2019.
3
On-chip manufacturing of synthetic proteins for point-of-care therapeutics.
Microsyst Nanoeng. 2019 Mar 25;5:13. doi: 10.1038/s41378-019-0051-8. eCollection 2019.
4
Integration of cell-free protein synthesis and purification in one microfluidic chip for on-demand production of recombinant protein.
Biomicrofluidics. 2018 Sep 13;12(5):054102. doi: 10.1063/1.5042307. eCollection 2018 Sep.
5
Accessing microfluidics through feature-based design software for 3D printing.
PLoS One. 2018 Mar 29;13(3):e0192752. doi: 10.1371/journal.pone.0192752. eCollection 2018.

本文引用的文献

2
Individually addressable arrays of replica microbial cultures enabled by splitting SlipChips.
Integr Biol (Camb). 2014 Aug;6(8):796-805. doi: 10.1039/c4ib00109e.
3
Nanostructured silicon membranes for control of molecular transport.
J Vac Sci Technol B Nanotechnol Microelectron. 2010 Nov;28(6):C6PC6P48-C6PC6P52. doi: 10.1116/1.3518911. Epub 2010 Dec 2.
4
Microfluidic cell culture.
Curr Opin Biotechnol. 2014 Feb;25:95-102. doi: 10.1016/j.copbio.2013.10.005. Epub 2013 Nov 12.
5
Enzyme reactions in nanoporous, picoliter volume containers.
Anal Chem. 2012 Jan 17;84(2):1092-7. doi: 10.1021/ac202726n. Epub 2011 Dec 27.
6
Micro total analysis systems for cell biology and biochemical assays.
Anal Chem. 2012 Jan 17;84(2):516-40. doi: 10.1021/ac202611x. Epub 2011 Oct 21.
7
Continuous protein production in nanoporous, picolitre volume containers.
Lab Chip. 2011 Oct 21;11(20):3523-9. doi: 10.1039/c1lc20462a. Epub 2011 Aug 31.
8
Molecular transport in a crowded volume created from vertically aligned carbon nanofibres: a fluorescence recovery after photobleaching study.
Nanotechnology. 2006 Nov 28;17(22):5659-68. doi: 10.1088/0957-4484/17/22/021. Epub 2006 Oct 30.
9
Microfluidic chemostat and turbidostat with flow rate, oxygen, and temperature control for dynamic continuous culture.
Lab Chip. 2011 May 21;11(10):1730-9. doi: 10.1039/c1lc20019d. Epub 2011 Mar 29.
10
Anomalous spatial redistribution of competing bacteria under starvation conditions.
J Bacteriol. 2011 Apr;193(8):1878-83. doi: 10.1128/JB.01430-10. Epub 2011 Feb 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验