Koyyalagunta Divya, Ganesh Karuna, Morris Quaid
Tri-Institutional Graduate Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY 10065, USA.
Computational and Systems Biology Program, Sloan Kettering Institute, New York, NY 10065, USA.
bioRxiv. 2025 Feb 3:2024.07.09.602790. doi: 10.1101/2024.07.09.602790.
Cancers differ in how they establish metastases. These differences can be studied by reconstructing the metastatic spread of a cancer from sequencing data of multiple tumors. Current methods to do so are limited by computational scalability and rely on technical assumptions that do not reflect current clinical knowledge. Metient overcomes these limitations using gradient-based, multi-objective optimization to generate multiple hypotheses of metastatic spread and rescores these hypotheses using independent data on genetic distance and organotropism. Unlike current methods, Metient can be used with both clinical sequencing data and barcode-based lineage tracing in preclinical models, enhancing its translatability across systems. In a reanalysis of metastasis in 169 patients and 490 tumors, Metient automatically identifies cancer type-specific trends of metastatic dissemination in melanoma, high-risk neuroblastoma, and non-small cell lung cancer. Its reconstructions often align with expert analyses but frequently reveal more plausible migration histories, including those with more metastasis-to-metastasis seeding and higher polyclonal seeding, offering new avenues for targeting metastatic cells. Metient's findings challenge existing assumptions about metastatic spread, enhance our understanding of cancer type-specific metastasis, and offer insights that inform future clinical treatment strategies of metastasis.
癌症在形成转移的方式上存在差异。这些差异可以通过从多个肿瘤的测序数据重建癌症的转移扩散来进行研究。目前用于此的方法受到计算可扩展性的限制,并且依赖于不符合当前临床知识的技术假设。Metient通过基于梯度的多目标优化克服了这些限制,以生成多个转移扩散假设,并使用关于遗传距离和器官趋向性的独立数据对这些假设重新评分。与当前方法不同,Metient可用于临床测序数据以及临床前模型中基于条形码的谱系追踪,增强了其在不同系统间的可转化性。在对169例患者和490个肿瘤的转移情况进行重新分析时,Metient自动识别出黑色素瘤、高危神经母细胞瘤和非小细胞肺癌中癌症类型特异性的转移播散趋势。其重建结果通常与专家分析一致,但常常揭示出更合理的迁移历史,包括那些转移灶间更多播种以及更高多克隆播种的情况,为靶向转移细胞提供了新途径。Metient的研究结果挑战了关于转移扩散的现有假设,增进了我们对癌症类型特异性转移的理解,并提供了可为未来转移临床治疗策略提供参考的见解。