Zhang Heming, Cao Dekang, Xu Tim, Chen Emily, Li Guangfu, Chen Yixin, Payne Philip, Province Michael, Li Fuhai
Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
Department of Computer Science and Engineering, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
bioRxiv. 2024 Sep 3:2024.08.01.606219. doi: 10.1101/2024.08.01.606219.
Multi-omic data can better characterize complex cellular signaling pathways from multiple views compared to individual omic data. However, integrative multi-omic data analysis to rank key disease biomarkers and infer core signaling pathways remains an open problem. In this study, our novel contributions are that we developed a novel graph AI model, , for analyzing multi-omic signaling graphs (mosGraphs), 2) analyzed multi-omic mosGraph datasets of AD, and 3) identified, visualized and evaluated a set of AD associated signaling biomarkers and network. The comparison results show that the proposed model not only achieves the best classification accuracy but also identifies important AD disease biomarkers and signaling interactions. Moreover, the signaling sources are highlighted at specific omic levels to facilitate the understanding of the pathogenesis of AD. The proposed model can also be applied and expanded for other studies using multi-omic data. Model code is accessible via GitHub: https://github.com/FuhaiLiAiLab/mosGraphFlow.
与单个组学数据相比,多组学数据可以从多个视角更好地表征复杂的细胞信号通路。然而,用于对关键疾病生物标志物进行排名并推断核心信号通路的综合多组学数据分析仍然是一个未解决的问题。在本研究中,我们的新贡献在于:1)我们开发了一种新颖的图人工智能模型,用于分析多组学信号图(mosGraphs);2)分析了阿尔茨海默病(AD)的多组学mosGraph数据集;3)识别、可视化并评估了一组与AD相关的信号生物标志物和网络。比较结果表明,所提出的模型不仅实现了最佳分类准确率,还识别出了重要的AD疾病生物标志物和信号相互作用。此外,在特定组学水平突出显示了信号来源,以促进对AD发病机制的理解。所提出的模型还可以应用于其他使用多组学数据的研究并进行扩展。模型代码可通过GitHub获取:https://github.com/FuhaiLiAiLab/mosGraphFlow 。