Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine, St. Louis, MO, USA.
Computer Science, Washington University School of Medicine, St. Louis, MO, USA.
NPJ Syst Biol Appl. 2024 Aug 21;10(1):92. doi: 10.1038/s41540-024-00421-w.
Complex signaling pathways are believed to be responsible for drug resistance. Drug combinations perturbing multiple signaling targets have the potential to reduce drug resistance. The large-scale multi-omic datasets and experimental drug combination synergistic score data are valuable resources to study mechanisms of synergy (MoS) to guide the development of precision drug combinations. However, signaling patterns of MoS are complex and remain unclear, and thus it is challenging to identify synergistic drug combinations in clinical. Herein, we proposed a novel integrative and interpretable graph AI model, DeepSignalingFlow, to uncover the MoS by integrating and mining multi-omic data. The major innovation is that we uncover MoS by modeling the signaling flow from multi-omic features of essential disease proteins to the drug targets, which has not been introduced by the existing models. The model performance was assessed utilizing four distinct drug combination synergy evaluation datasets, i.e., NCI ALMANAC, O'Neil, DrugComb, and DrugCombDB. The comparison results showed that the proposed model outperformed existing graph AI models in terms of synergy score prediction, and can interpret MoS using the core signaling flows. The code is publicly accessible via Github: https://github.com/FuhaiLiAiLab/DeepSignalingFlow.
复杂的信号通路被认为是导致耐药性的原因。干扰多个信号靶点的药物组合有可能降低耐药性。大规模的多组学数据集和实验药物组合协同作用评分数据是研究协同作用机制 (MoS) 以指导精准药物组合开发的宝贵资源。然而,MoS 的信号模式复杂且仍不清楚,因此在临床中识别协同药物组合具有挑战性。在此,我们提出了一种新颖的集成和可解释的图人工智能模型 DeepSignalingFlow,通过整合和挖掘多组学数据来揭示 MoS。主要创新之处在于,我们通过对从关键疾病蛋白的多组学特征到药物靶点的信号流进行建模来揭示 MoS,这是现有模型所没有引入的。我们使用四个不同的药物组合协同作用评估数据集(即 NCI ALMANAC、O'Neil、DrugComb 和 DrugCombDB)来评估模型性能。比较结果表明,与现有图人工智能模型相比,所提出的模型在协同评分预测方面表现更好,并且可以使用核心信号流来解释 MoS。该代码可通过 Github 公开访问:https://github.com/FuhaiLiAiLab/DeepSignalingFlow。