Ye Julia, Boileau Ryan M, Parchem Ronald J, Judson-Torres Robert L, Blelloch Robert
The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, 94143, USA.
Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California, 94143, USA.
bioRxiv. 2024 Sep 3:2024.09.02.610895. doi: 10.1101/2024.09.02.610895.
The miR-290 and miR-302 clusters of microRNAs are highly expressed in naïve and primed pluripotent stem cells, respectively. Ectopic expression of the embryonic stem cell-specific cell cycle regulating (ESCC) family of microRNAs arising from these two clusters dramatically enhances the reprogramming of both mouse and human somatic cells to induced pluripotency. Here, we used genetic knockouts to dissect the requirement for the miR-290 and miR-302 clusters during the reprogramming of mouse fibroblasts into induced pluripotent stem cells (iPSCs) with retrovirally introduced Oct4, Sox2, and Klf4. Knockout of either cluster alone did not negatively impact the efficiency of reprogramming. Resulting cells appeared identical to their embryonic stem cell microRNA cluster knockout counterparts. In contrast, the combined loss of both clusters blocked the formation of iPSCs. While rare double knockout clones could be isolated, they showed a dramatically reduced proliferation rate, a persistent inability to fully silence the exogenously introduced pluripotency factors, and a transcriptome distinct from individual miR-290 or miR-302 mutant ESC and iPSCs. Taken together, our data show that miR-290 and miR-302 are essential yet interchangeable in reprogramming to the induced pluripotent state.
The process by which somatic cell reprogramming yields induced pluripotent stem cells (iPSCs) is incompletely understood. MicroRNAs from the miR-290 and miR-302 clusters have been shown to greatly increase reprogramming efficiency, but their requirement in the process has not been studied. Here, we examine this requirement by genetically removing the miRNA clusters in somatic cells. We discover that somatic cells lacking either, but not both, of these miRNA clusters can form iPSC cells. This work thus provides new important insight into mechanisms underlying reprogramming to pluripotency.
微小RNA的miR - 290和miR - 302簇分别在原始多能干细胞和启动多能干细胞中高表达。源自这两个簇的胚胎干细胞特异性细胞周期调节(ESCC)微小RNA家族的异位表达显著增强了小鼠和人类体细胞重编程为诱导多能性的能力。在这里,我们利用基因敲除技术来剖析在将小鼠成纤维细胞重编程为诱导多能干细胞(iPSC)的过程中对miR - 290和miR - 302簇的需求,重编程过程中通过逆转录病毒导入Oct4、Sox2和Klf4。单独敲除任一簇对重编程效率没有负面影响。所得细胞与它们的胚胎干细胞微小RNA簇敲除对应物看起来相同。相比之下,两个簇的共同缺失阻碍了iPSC的形成。虽然可以分离出罕见的双敲除克隆,但它们显示出增殖速率显著降低、持续无法完全沉默外源导入的多能性因子以及与单个miR - 290或miR - 302突变胚胎干细胞和iPSC不同的转录组。综上所述,我们的数据表明miR - 290和miR - 302在重编程为诱导多能状态中是必不可少的但又可相互替代。
体细胞重编程产生诱导多能干细胞(iPSC)的过程尚未完全了解。来自miR - 290和miR - 302簇的微小RNA已被证明能大大提高重编程效率,但它们在这个过程中的需求尚未得到研究。在这里,我们通过在体细胞中基因去除微小RNA簇来研究这种需求。我们发现缺乏这两个微小RNA簇中的任何一个而非两个都缺乏的体细胞可以形成iPSC细胞。因此这项工作为多能性重编程的潜在机制提供了新的重要见解。