Suppr超能文献

用于脑形态异常检测的可推广规范深度自动编码器:在外部验证框架中应用于双相情感障碍的多站点StratiBip数据集。

A generalizable normative deep autoencoder for brain morphological anomaly detection: application to the multi-site StratiBip dataset on bipolar disorder in an external validation framework.

作者信息

Sampaio Inês Won, Tassi Emma, Bellani Marcella, Benedetti Francesco, Nenadic Igor, Phillips Mary, Piras Fabrizio, Yatham Lakshmi, Bianchi Anna Maria, Brambilla Paolo, Maggioni Eleonora

机构信息

Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.

Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.

出版信息

bioRxiv. 2024 Sep 7:2024.09.04.611239. doi: 10.1101/2024.09.04.611239.

Abstract

The heterogeneity of psychiatric disorders makes researching disorder-specific neurobiological markers an ill-posed problem. Here, we face the need for disease stratification models by presenting a generalizable multivariate normative modelling framework for characterizing brain morphology, applied to bipolar disorder (BD). We employed deep autoencoders in an anomaly detection framework, combined with a confounder removal step integrating training and external validation. The model was trained with healthy control (HC) data from the human connectome project and applied to multi-site external data of HC and BD individuals. We found that brain deviating scores were greater, more heterogeneous, and with increased extreme values in the BD group, with volumes prominently from the basal ganglia, hippocampus and adjacent regions emerging as significantly deviating. Similarly, individual brain deviating maps based on modified z scores expressed higher abnormalities occurrences, but their overall spatial overlap was lower compared to HCs. Our generalizable framework enabled the identification of subject- and group-level brain normative-deviating patterns, a step forward towards the development of more effective and personalized clinical decision support systems and patient stratification in psychiatry.

摘要

精神疾病的异质性使得研究特定疾病的神经生物学标志物成为一个不适定问题。在此,我们通过提出一个用于表征脑形态的可推广多变量规范建模框架,应用于双相情感障碍(BD),来面对疾病分层模型的需求。我们在异常检测框架中使用深度自动编码器,并结合一个整合训练和外部验证的混杂因素去除步骤。该模型使用来自人类连接组计划的健康对照(HC)数据进行训练,并应用于HC和BD个体的多站点外部数据。我们发现,BD组的脑偏离分数更高、更具异质性且极端值增加,基底神经节、海马体及相邻区域的体积显著偏离。同样,基于修正z分数的个体脑偏离图显示出更高的异常发生率,但与HC相比,它们的总体空间重叠较低。我们的可推广框架能够识别个体和组水平的脑规范偏离模式,朝着开发更有效和个性化的临床决策支持系统以及精神病学患者分层迈出了一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bec/11398360/5822b6544c3d/nihpp-2024.09.04.611239v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验