Automation and Control Group, Department of Electrical Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
AGCO A/S, 8930 Randers, Denmark.
Sensors (Basel). 2022 May 10;22(10):3608. doi: 10.3390/s22103608.
The safe in-field operation of autonomous agricultural vehicles requires detecting all objects that pose a risk of collision. Current vision-based algorithms for object detection and classification are unable to detect unknown classes of objects. In this paper, the problem is posed as anomaly detection instead, where convolutional autoencoders are applied to identify any objects deviating from the normal pattern. Training an autoencoder network to reconstruct normal patterns in agricultural fields makes it possible to detect unknown objects by high reconstruction error. Basic autoencoder (AE), vector-quantized variational autoencoder (VQ-VAE), denoising autoencoder (DAE) and semisupervised autoencoder (SSAE) with a max-margin-inspired loss function are investigated and compared with a baseline object detector based on YOLOv5. Results indicate that SSAE with an area under the curve for precision/recall (PR AUC) of 0.9353 outperforms other autoencoder models and is comparable to an object detector with a PR AUC of 0.9794. Qualitative results show that SSAE is capable of detecting unknown objects, whereas the object detector is unable to do so and fails to identify known classes of objects in specific cases.
自主农业车辆的安全场内作业需要检测所有可能发生碰撞的危险物体。当前基于视觉的目标检测和分类算法无法检测未知类别的物体。在本文中,将该问题表述为异常检测,应用卷积自动编码器来识别偏离正常模式的任何物体。通过对自动编码器网络进行训练以重建农业场景中的正常模式,可通过高重建误差检测未知物体。研究了基本自动编码器(AE)、向量量化变分自动编码器(VQ-VAE)、去噪自动编码器(DAE)和具有最大间隔启发式损失函数的半监督自动编码器(SSAE),并与基于 YOLOv5 的基线目标检测器进行了比较。结果表明,SSAE 的准确率/召回率(PR AUC)为 0.9353,优于其他自动编码器模型,与 PR AUC 为 0.9794 的目标检测器相当。定性结果表明,SSAE 能够检测未知物体,而目标检测器无法检测到未知物体,并且在某些情况下无法识别已知类别的物体。