Suppr超能文献

基于F-FDG PET的放射组学模型在预测乳腺癌新辅助化疗后病理完全缓解中的开发与外部验证

Development and External Validation of F-FDG PET-Based Radiomic Model for Predicting Pathologic Complete Response after Neoadjuvant Chemotherapy in Breast Cancer.

作者信息

Lim Chae Hong, Choi Joon Young, Choi Joon Ho, Lee Jun-Hee, Lee Jihyoun, Lim Cheol Wan, Kim Zisun, Woo Sang-Keun, Park Soo Bin, Park Jung Mi

机构信息

Department of Nuclear Medicine, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea.

Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea.

出版信息

Cancers (Basel). 2023 Jul 28;15(15):3842. doi: 10.3390/cancers15153842.

Abstract

The aim of our retrospective study is to develop and externally validate an F-FDG PET-derived radiomics model for predicting pathologic complete response (pCR) after neoadjuvant chemotherapy (NAC) in breast cancer patients. A total of 87 breast cancer patients underwent curative surgery after NAC at Soonchunhyang University Seoul Hospital and were randomly assigned to a training cohort and an internal validation cohort. Radiomic features were extracted from pretreatment PET images. A radiomic-score model was generated using the LASSO method. A combination model incorporating significant clinical variables was constructed. These models were externally validated in a separate cohort of 28 patients from Soonchunhyang University Buscheon Hospital. The model performances were assessed using area under the receiver operating characteristic (AUC). Seven radiomic features were selected to calculate the radiomic-score. Among clinical variables, human epidermal growth factor receptor 2 status was an independent predictor of pCR. The radiomic-score model achieved good discriminability, with AUCs of 0.963, 0.731, and 0.729 for the training, internal validation, and external validation cohorts, respectively. The combination model showed improved predictive performance compared to the radiomic-score model alone, with AUCs of 0.993, 0.772, and 0.906 in three cohorts, respectively. The F-FDG PET-derived radiomic-based model is useful for predicting pCR after NAC in breast cancer.

摘要

我们这项回顾性研究的目的是开发并在外部验证一种基于F-FDG PET的放射组学模型,用于预测乳腺癌患者新辅助化疗(NAC)后的病理完全缓解(pCR)。共有87例乳腺癌患者在顺天乡大学首尔医院接受NAC后进行了根治性手术,并被随机分配到训练队列和内部验证队列。从治疗前的PET图像中提取放射组学特征。使用LASSO方法生成放射组学评分模型。构建了一个纳入显著临床变量的联合模型。这些模型在顺天乡大学盆唐医院的另外28例患者组成的队列中进行了外部验证。使用受试者操作特征曲线下面积(AUC)评估模型性能。选择了七个放射组学特征来计算放射组学评分。在临床变量中,人表皮生长因子受体2状态是pCR的独立预测因素。放射组学评分模型具有良好的区分能力,训练队列、内部验证队列和外部验证队列的AUC分别为0.963、0.731和0.729。联合模型与单独的放射组学评分模型相比,预测性能有所提高,在三个队列中的AUC分别为0.993、0.772和0.906。基于F-FDG PET的放射组学模型可用于预测乳腺癌NAC后的pCR。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e39/10417050/406e49bc339d/cancers-15-03842-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验