Suppr超能文献

探索用于治疗探索的中药类先导分子:毒性评估、动力学模拟和药代动力学分析。

Exploring Lead-Like Molecules of Traditional Chinese Medicine for Treatment Quest against : Toxicity Assessment, Dynamics Simulation, and Pharmacokinetic Profiling.

作者信息

Basharat Zarrin, Ahmed Ibrar, Alnasser Sulaiman Mohammed, Meshal Alotaibi, Waheed Yasir

机构信息

Alpha Genomics (Private) Limited, Islamabad 45710, Pakistan.

Group of Biometrology, The Korea Research Institute of Standards and Science (KRISS), Yuseong District, Daejeon 34113, Republic of Korea.

出版信息

Biomed Res Int. 2024 Feb 22;2024:9377016. doi: 10.1155/2024/9377016. eCollection 2024.

Abstract

BACKGROUND

is a Gram-negative, curved or spiral-shaped, microaerophilic bacterium and causes human infections, specifically diarrhea, fever, and sepsis. The research objective of this study was to employ computer-aided drug design techniques to identify potential natural product inhibitors of a vital enzyme in this bacterium. The pyrimidine biosynthesis pathway in its core genome fraction is crucial for its survival and presents a potential target for novel therapeutics. Hence, novel small molecule inhibitors were identified (from traditional Chinese medicinal (TCM) compound library) against it, which may be used for possible curbing of infection by . A comprehensive subtractive genomics approach was utilized to identify a key enzyme (orotidine-5'-phosphate decarboxylase) cluster conserved in the core genome fraction of . It was selected for inhibitor screening due to its vital role in pyrimidine biosynthesis. TCM library ( > 36,000 compounds) was screened against it using pharmacophore model based on orotidylic acid (control), and the obtained lead-like molecules were subjected to structural docking using AutoDock Vina. The top-scoring compounds, ZINC70454134, ZINC85632684, and ZINC85632721, underwent further scrutiny via a combination of physiological-based pharmacokinetics, toxicity assessment, and atomic-scale dynamics simulations (100 ns).

RESULTS

Among the screened compounds, ZINC70454134 displayed the most favorable characteristics in terms of binding, stability, absorption, and safety parameters. Overall, traditional Chinese medicine (TCM) compounds exhibited high bioavailability, but in diseased states (cirrhosis, renal impairment, and steatosis), there was a significant decrease in absorption, Cmax, and AUC of the compounds compared to the healthy state. Furthermore, MD simulation demonstrated that the ODCase-ZINC70454134 complex had a superior overall binding affinity, supported by PCA proportion of variance and eigenvalue rank analysis. These favorable characteristics underscore its potential as a promising drug candidate.

CONCLUSION

The computer-aided drug design approach employed for this study helped expedite the discovery of antibacterial compounds against , offering a cost-effective and efficient approach to address infection by it. It is recommended that ZINC70454134 should be considered for further experimental analysis due to its indication as a potential therapeutic agent for combating infections. This study provides valuable insights into the molecular basis of biophysical inhibition of through TCM compounds.

摘要

背景

[细菌名称未给出]是一种革兰氏阴性、弯曲或螺旋状的微需氧细菌,可引起人类感染,特别是腹泻、发热和败血症。本研究的目的是运用计算机辅助药物设计技术,来识别该细菌中一种关键酶的潜在天然产物抑制剂。其核心基因组部分中的嘧啶生物合成途径对其生存至关重要,是新型治疗药物的潜在靶点。因此,确定了(来自中药(TCM)化合物库的)针对该酶的新型小分子抑制剂,这些抑制剂可能用于抑制[细菌名称未给出]感染。采用综合减法基因组学方法,在[细菌名称未给出]的核心基因组部分中鉴定出一个保守的关键酶(乳清苷 -5'-磷酸脱羧酶)簇。因其在嘧啶生物合成中的关键作用,所以选择它进行抑制剂筛选。基于乳清苷酸(对照)的药效团模型,对中药库(超过36,000种化合物)进行筛选,并使用AutoDock Vina对获得的类先导分子进行结构对接。得分最高的化合物ZINC70454134、ZINC85632684和ZINC85632721,通过基于生理学的药代动力学、毒性评估和原子尺度动力学模拟(100纳秒)的组合进行进一步研究。

结果

在筛选出的化合物中,ZINC70454134在结合、稳定性、吸收和安全参数方面表现出最有利的特性。总体而言,中药化合物具有较高的生物利用度,但在疾病状态(肝硬化、肾功能损害和脂肪变性)下,与健康状态相比,化合物的吸收、Cmax和AUC显著降低。此外,分子动力学模拟表明,ODCase - ZINC70454134复合物具有更高的整体结合亲和力,主成分分析的方差比例和特征值排名分析也支持这一点。这些有利特性突出了其作为有前景的候选药物的潜力。

结论

本研究采用的计算机辅助药物设计方法有助于加快针对[细菌名称未给出]的抗菌化合物的发现,为解决其感染提供了一种经济高效的方法。鉴于ZINC70454134作为对抗[细菌名称未给出]感染的潜在治疗剂的迹象,建议对其进行进一步的实验分析。本研究为通过中药化合物对[细菌名称未给出]进行生物物理抑制的分子基础提供了有价值的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验