Department of Research and Development, Shing Huei Group, Taipei, 10617, Taiwan.
College of Pharmacy, University of Arizona, Tuscon, AZ, 85721, USA.
Sci Rep. 2024 Jul 29;14(1):17437. doi: 10.1038/s41598-024-68443-2.
Bacterial vaginosis (BV), primarily attributed to Gardnerella vaginalis, poses significant challenges due to antibiotic resistance and suboptimal treatment outcomes. This study presents an integrated approach to identify potential drug targets and screen compounds against this bacterium by leveraging a computational methodology. Subtractive proteomics of the reference strain ASM286196v1/UMB0386 (assembly accession: GCA_002861965.1) facilitated the prioritization of proteins with essential bacterial functions and pathways as potential drug targets. We selected 3-deoxy-7-phosphoheptulonate synthase (aroG gene product; also known as DAHP synthase) for downstream analysis. Molecular docking was employed in PyRx (AutoDock Vina) to predict binding affinities between aroG inhibitors from the ZINC database and 3-deoxy-7-phosphoheptulonate synthase. Molecular dynamics simulations of 100 ns, using GROMACS, validated the stability of drug-target interactions. Additionally, ADMET profiling aided in the selection of compounds with favorable pharmacokinetic properties and safety profile for human hosts. PBPK profiling showed that ZINC98088375 had the highest bioavailability and efficient systemic circulation. Conversely, ZINC5113880 demonstrated the lowest absorption rate (39.661%). Moreover, cirrhosis, steatosis, and renal impairment appeared to influence blood concentration of the drug, impacting bioavailability. The integrative -omics approach utilized in this study underscores the potential of computer-aided drug design and offers a rational strategy for targeted inhibitor discovery against G. vaginalis. The strategy is an attempt to address the limitations of current BV treatments, including antibiotic resistance, and pave way for the development of safer and more effective therapeutics.
细菌性阴道病(BV)主要由阴道加德纳菌引起,由于抗生素耐药性和治疗效果不佳,给临床带来了极大的挑战。本研究采用计算方法,提出了一种综合方法来鉴定潜在的药物靶点,并对该细菌进行化合物筛选。参考菌株 ASM286196v1/UMB0386(组装 accession: GCA_002861965.1)的消减蛋白质组学有助于确定具有必需细菌功能和途径的蛋白质,将其作为潜在的药物靶点进行优先级排序。我们选择了 3-脱氧-7-磷酸庚酮糖合酶(aroG 基因产物;也称为 DAHP 合酶)进行下游分析。在 PyRx(AutoDock Vina)中使用分子对接预测 ZINC 数据库中 aroG 抑制剂与 3-脱氧-7-磷酸庚酮糖合酶之间的结合亲和力。使用 GROMACS 进行 100ns 的分子动力学模拟,验证了药物-靶标相互作用的稳定性。此外,ADMET 分析有助于选择对人类宿主具有良好药代动力学特性和安全性的化合物。PBPK 分析表明,ZINC98088375 具有最高的生物利用度和有效的全身循环。相反,ZINC5113880 表现出最低的吸收率(39.661%)。此外,肝硬化、脂肪变性和肾功能损害似乎会影响药物的血液浓度,从而影响生物利用度。本研究中使用的整合组学方法强调了计算机辅助药物设计的潜力,并为针对阴道加德纳菌的靶向抑制剂发现提供了合理的策略。该策略旨在解决当前 BV 治疗方法的局限性,包括抗生素耐药性,并为开发更安全、更有效的治疗方法铺平道路。