Suppr超能文献

基于群组测试数据的回归模型中的后选择推断。

Post-selection inference in regression models for group testing data.

机构信息

Department of Statistics, University of South Carolina, Columbia, SC 29208, United States of America.

出版信息

Biometrics. 2024 Jul 1;80(3). doi: 10.1093/biomtc/ujae101.

Abstract

We develop a methodology for valid inference after variable selection in logistic regression when the responses are partially observed, that is, when one observes a set of error-prone testing outcomes instead of the true values of the responses. Aiming at selecting important covariates while accounting for missing information in the response data, we apply the expectation-maximization algorithm to compute maximum likelihood estimators subject to LASSO penalization. Subsequent to variable selection, we make inferences on the selected covariate effects by extending post-selection inference methodology based on the polyhedral lemma. Empirical evidence from our extensive simulation study suggests that our post-selection inference results are more reliable than those from naive inference methods that use the same data to perform variable selection and inference without adjusting for variable selection.

摘要

我们开发了一种在逻辑回归中进行变量选择后的有效推断方法,适用于响应部分观测的情况,即观测到一组易出错的测试结果,而不是响应的真实值。为了在考虑响应数据中缺失信息的同时选择重要的协变量,我们应用期望最大化算法在 LASSO 惩罚下计算最大似然估计量。在变量选择之后,我们通过扩展基于多面体引理的选择后推断方法对所选协变量效应进行推断。我们广泛的模拟研究的实证证据表明,与使用相同数据进行变量选择和推断而不进行变量选择调整的简单推断方法相比,我们的选择后推断结果更可靠。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验