Suppr超能文献

比较机器学习模型预测减重手术并发症:系统评价。

Comparison of machine learning models to predict complications of bariatric surgery: A systematic review.

机构信息

Department of Health Information Management, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran.

出版信息

Health Informatics J. 2024 Jul-Sep;30(3):14604582241285794. doi: 10.1177/14604582241285794.

Abstract

Due to changes in lifestyle, bariatric surgery is expanding worldwide. However, this surgery has numerous complications, and early identification of these complications could be essential in assisting patients to have a higher-quality surgery. Machine learning has a significant role in prediction tasks. So far, no systematic review has been carried out on leveraging ML techniques for predicting complications of bariatric surgery. Therefore, this study aims to perform a systematic review for better prediction insight. This review was conducted in 2023 based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). We searched scientific databases using the inclusion and exclusion criteria to obtain articles. The data extraction form was used to gather data. To analyze the data, we leveraged the narrative synthesis of the quantitative data. Ensemble algorithms outperformed others in large databases, especially at the national registries. Artificial Neural Networks (ANN) performed better than others based on one-single-center database. Also, Deep Belief Networks (DBN) and ANN obtained favorable performance for complications such as diabetes, dyslipidemia, hypertension, thrombosis, leakage, and depression. This review gave us insight into using ensemble and non-ensemble algorithms based on the types of datasets and complications.

摘要

由于生活方式的改变,减重手术在全球范围内不断扩大。然而,这种手术有许多并发症,早期识别这些并发症对于帮助患者进行更高质量的手术至关重要。机器学习在预测任务中具有重要作用。到目前为止,还没有针对利用机器学习技术预测减重手术并发症的系统评价。因此,本研究旨在进行系统评价以获得更好的预测见解。 本综述于 2023 年根据系统评价和荟萃分析的首选报告项目 (PRISMA) 进行。我们使用纳入和排除标准在科学数据库中搜索文章。使用数据提取表来收集数据。为了分析数据,我们利用了定量数据的叙述性综合。 在大型数据库中,集成算法的表现优于其他算法,尤其是在国家注册中心。基于单一中心数据库,人工神经网络 (ANN) 的表现优于其他算法。此外,深度置信网络 (DBN) 和 ANN 在糖尿病、血脂异常、高血压、血栓形成、渗漏和抑郁等并发症方面表现良好。 本综述使我们深入了解了基于数据集类型和并发症使用集成和非集成算法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验