Suppr超能文献

在近原子尺度上重新审视7xxx系铝合金中的应力腐蚀开裂和氢脆现象。

Revisiting stress-corrosion cracking and hydrogen embrittlement in 7xxx-Al alloys at the near-atomic-scale.

作者信息

López Freixes Martí, Zhou Xuyang, Zhao Huan, Godin Hélène, Peguet Lionel, Warner Timothy, Gault Baptiste

机构信息

Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany.

C-TEC, Parc Economique Centr'alp, Constellium Technology Center, Voreppe, Cedex, France.

出版信息

Nat Commun. 2022 Jul 25;13(1):4290. doi: 10.1038/s41467-022-31964-3.

Abstract

The high-strength 7xxx series aluminium alloys can fulfil the need for light, high strength materials necessary to reduce carbon-emissions, and are extensively used in aerospace for weight reduction purposes. However, as all major high-strength materials, these alloys can be sensitive to stress-corrosion cracking (SCC) through anodic dissolution and hydrogen embrittlement (HE). Here, we study at the near-atomic-scale the intra- and inter-granular microstructure ahead and in the wake of a propagating SCC crack. Moving away from model alloys and non-industry standard tests, we perform a double cantilever beam (DCB) crack growth test on an engineering 7xxx Al-alloy. H is found segregated to planar arrays of dislocations and to grain boundaries that we can associate to the combined effects of hydrogen-enhanced localised plasticity (HELP) and hydrogen-enhanced decohesion (HEDE) mechanisms. We report on a Mg-rich amorphous hydroxide on the corroded crack surface and evidence of Mg-related diffusional processes leading to dissolution of the strengthening η-phase precipitates ahead of the crack.

摘要

高强度7xxx系列铝合金能够满足对轻质、高强度材料的需求,这些材料对于减少碳排放至关重要,并且在航空航天领域被广泛用于减轻重量。然而,与所有主要的高强度材料一样,这些合金可能会通过阳极溶解和氢脆(HE)对应力腐蚀开裂(SCC)敏感。在此,我们在接近原子尺度上研究了扩展的SCC裂纹前方和后方的晶内和晶间微观结构。我们不再使用模型合金和非行业标准测试,而是对一种工程7xxx铝合金进行双悬臂梁(DCB)裂纹扩展测试。发现氢偏聚到位错的平面阵列和晶界,我们可以将其与氢增强局部塑性(HELP)和氢增强脱粘(HEDE)机制的综合作用联系起来。我们报告了腐蚀裂纹表面上富含镁的非晶态氢氧化物以及与镁相关的扩散过程的证据,这些过程导致裂纹前方强化η相析出物的溶解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fa2/9314352/e5bb84b895d1/41467_2022_31964_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验