Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany.
BAM Federal Institute for Materials Research and Testing, Berlin, Germany.
Nature. 2022 Feb;602(7897):437-441. doi: 10.1038/s41586-021-04343-z. Epub 2022 Feb 16.
Ever more stringent regulations on greenhouse gas emissions from transportation motivate efforts to revisit materials used for vehicles. High-strength aluminium alloys often used in aircrafts could help reduce the weight of automobiles, but are susceptible to environmental degradation. Hydrogen 'embrittlement' is often indicated as the main culprit; however, the exact mechanisms underpinning failure are not precisely known: atomic-scale analysis of H inside an alloy remains a challenge, and this prevents deploying alloy design strategies to enhance the durability of the materials. Here we performed near-atomic-scale analysis of H trapped in second-phase particles and at grain boundaries in a high-strength 7xxx Al alloy. We used these observations to guide atomistic ab initio calculations, which show that the co-segregation of alloying elements and H favours grain boundary decohesion, and the strong partitioning of H into the second-phase particles removes solute H from the matrix, hence preventing H embrittlement. Our insights further advance the mechanistic understanding of H-assisted embrittlement in Al alloys, emphasizing the role of H traps in minimizing cracking and guiding new alloy design.
越来越严格的运输温室气体排放法规促使人们努力重新审视用于车辆的材料。高强度铝合金常用于飞机,可以帮助减轻汽车的重量,但易受环境退化的影响。氢脆化通常被认为是主要罪魁祸首;然而,失败的确切机制并不完全清楚:合金中氢的原子尺度分析仍然是一个挑战,这阻碍了合金设计策略的部署,以提高材料的耐久性。在这里,我们对高强度 7xxx Al 合金中第二相粒子和晶界中捕获的 H 进行了近原子尺度分析。我们利用这些观察结果来指导原子模拟计算,结果表明,合金元素和 H 的共偏析有利于晶界脱粘,而 H 强烈地偏析到第二相粒子中,将溶质 H 从基体中去除,从而防止氢脆化。我们的研究结果进一步加深了对 Al 合金中氢辅助脆化的机理理解,强调了氢陷阱在最小化开裂和指导新合金设计方面的作用。