Suppr超能文献

使用深度成像和三维重建进行在线鸡胴体体积估计

Online chicken carcass volume estimation using depth imaging and 3-D reconstruction.

作者信息

Nyalala Innocent, Jiayu Zhang, Zixuan Chen, Junlong Chen, Chen Kunjie

机构信息

College of Engineering, Nanjing Agricultural University, Nanjing, Jiangsu, 210031, China; Faculty of Science, Department of Computer Science, Egerton University, Njoro, Kenya.

College of Engineering, Nanjing Agricultural University, Nanjing, Jiangsu, 210031, China.

出版信息

Poult Sci. 2024 Dec;103(12):104232. doi: 10.1016/j.psj.2024.104232. Epub 2024 Aug 23.

Abstract

Variability in the size of slaughtered chickens remains a longstanding challenge in the standardization of the poultry industry. To address this issue, we present a novel approach that uses volume as a grading metric for chicken carcasses. This innovative method, unexplored in existing studies, employs real-time data capture of moving chicken carcasses on a production line using Kinect v2 depth imaging and 3-D reconstruction technologies. The captured depth images are processed into point clouds followed by 3-D reconstruction. Volume is calculated from the reconstructed models using the surface integration method, and additional 2-D and 3-D features are extracted as input parameters for machine learning models. Multiple regression models were evaluated, with the bagged tree model demonstrating superior performance, achieving an R² value of 0.9988, RMSE of 5.335, and ARE of 2.125%. Furthermore, our method showed remarkable efficiency with an average processing time of less than 1.6 seconds per carcass. These results indicate that our novel approach fills a critical gap in existing automated grading methodologies by offering both accuracy and efficiency. This validates the applicability of depth imaging, 3-D reconstruction, and machine learning for estimating chicken carcass volume with high precision, thereby enabling a more comprehensive, efficient, and reliable chicken carcass grading system.

摘要

屠宰鸡的大小差异一直是家禽行业标准化面临的长期挑战。为解决这一问题,我们提出了一种新颖的方法,即使用体积作为鸡胴体的分级指标。这种创新方法在现有研究中尚未被探索,它利用Kinect v2深度成像和三维重建技术对生产线上移动的鸡胴体进行实时数据采集。采集到的深度图像被处理成点云,然后进行三维重建。使用表面积分法从重建模型中计算体积,并提取额外的二维和三维特征作为机器学习模型的输入参数。对多个回归模型进行了评估,袋装树模型表现出卓越的性能,R²值为0.9988,均方根误差为5.335,平均相对误差为2.125%。此外,我们的方法效率显著,每只胴体的平均处理时间不到1.6秒。这些结果表明,我们的新方法通过提供准确性和效率,填补了现有自动分级方法中的关键空白。这验证了深度成像、三维重建和机器学习在高精度估计鸡胴体体积方面的适用性,从而实现了一个更全面、高效和可靠的鸡胴体分级系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d414/11419819/ce4311c141ba/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验