Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA.
Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA; Department of Medicine (Nephrology), University of California San Diego, La Jolla, CA 92093, USA.
Pharmacol Ther. 2024 Nov;263:108723. doi: 10.1016/j.pharmthera.2024.108723. Epub 2024 Sep 14.
The organic anion transporters, OAT1 and OAT3, regulate the movement of drugs, toxins, and endogenous metabolites. In 2007, we proposed that OATs and other SLC22 transporters are involved in "remote sensing" and organ crosstalk. This is now known as the Remote Sensing and Signaling Theory (RSST). In the proximal tubule of the kidney, OATs regulate signaling molecules such as fatty acids, bile acids, indoxyl sulfate, kynurenine, alpha-ketoglutarate, urate, flavonoids, and antioxidants. OAT1 and OAT3 function as key hubs in a large homeostatic network involving multi-, oligo- and monospecific transporters, enzymes, and nuclear receptors. The Remote Sensing and Signaling Theory emphasizes the functioning of OATs and other "drug" transporters in the network at multiple biological scales (inter-organismal, organism, organ, cell, organelle). This network plays an essential role in the homeostasis of urate, bile acids, prostaglandins, sex steroids, odorants, thyroxine, gut microbiome metabolites, and uremic toxins. The transported metabolites have targets in the kidney and other organs, including nuclear receptors (e.g., HNF4a, AHR), G protein-coupled receptors (GPCRs), and protein kinases. Feed-forward and feedback loops allow OAT1 and OAT3 to mediate organ crosstalk as well as modulate energy metabolism, redox state, and remote sensing. Furthermore, there is intimate inter-organismal communication between renal OATs and the gut microbiome. Extracellular vesicles containing microRNAs and proteins (exosomes) play a key role in the Remote Sensing and Signaling System as does the interplay with the neuroendocrine, hormonal, and immune systems. Perturbation of function with OAT-interacting drugs (e.g., probenecid, diuretics, antivirals, antibiotics, NSAIDs) can lead to drug-metabolite interactions. The RSST has general applicability to other multi-specific SLC and ABC "drug" transporters (e.g., OCT1, OCT2, SLCO1B1, SLCO1B3, ABCG2, P-gp, ABCC2, ABCC3, ABCC4). Recent high-resolution structures of SLC22 and other transporters, together with chemoinformatic and artificial intelligence methods, will aid drug development and also lead to a deeper mechanistic understanding of polymorphisms.
有机阴离子转运体(OAT)1 和 OAT3 调节药物、毒素和内源性代谢物的运动。2007 年,我们提出 OAT 和其他 SLC22 转运体参与“远程感应”和器官串扰。这就是现在的远程感应和信号转导理论(RSST)。在肾脏的近端小管中,OAT 调节信号分子,如脂肪酸、胆汁酸、吲哚硫酸、犬尿氨酸、α-酮戊二酸、尿酸盐、类黄酮和抗氧化剂。OAT1 和 OAT3 作为涉及多种、寡聚和单特异性转运体、酶和核受体的大型体内平衡网络的关键枢纽发挥作用。远程感应和信号转导理论强调 OAT 和其他“药物”转运体在多个生物学尺度(种间、个体、器官、细胞、细胞器)网络中的功能。该网络在尿酸盐、胆汁酸、前列腺素、性激素、气味、甲状腺素、肠道微生物组代谢物和尿毒症毒素的体内平衡中发挥着重要作用。转运的代谢物在肾脏和其他器官中有靶点,包括核受体(如 HNF4a、AHR)、G 蛋白偶联受体(GPCR)和蛋白激酶。前馈和反馈回路允许 OAT1 和 OAT3 介导器官串扰以及调节能量代谢、氧化还原状态和远程感应。此外,肾脏 OAT 与肠道微生物组之间存在密切的种间通讯。含有 microRNAs 和蛋白质(外泌体)的细胞外囊泡在远程感应和信号转导系统中发挥关键作用,与神经内分泌、激素和免疫系统的相互作用也是如此。OAT 相互作用药物(如丙磺舒、利尿剂、抗病毒药、抗生素、非甾体抗炎药)的功能失调会导致药物-代谢物相互作用。RSST 具有普遍适用性,适用于其他多特异性 SLC 和 ABC“药物”转运体(如 OCT1、OCT2、SLCO1B1、SLCO1B3、ABCG2、P-gp、ABCC2、ABCC3、ABCC4)。SLC22 和其他转运体的高分辨率结构、 chemoinformatic 和人工智能方法将有助于药物开发,并深入了解多态性的机制。