Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China.
Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China.
J Affect Disord. 2025 Jan 1;368:160-171. doi: 10.1016/j.jad.2024.09.032. Epub 2024 Sep 14.
Major depressive disorder (MDD) is a pervasive mental and mood disorder with complicated and heterogeneous etiology. Mitophagy, a selective autophagy of cells, specifically eliminates dysfunctional mitochondria. The mitochondria dysfunction in the astrocytes is regarded as a critical pathogenetic mechanism of MDD. However, studies on the mitophagy of astrocytes in MDD are scarce. To explore the impact of mitophagy on the astrocytes, we used bioinformatic methods to analyze the correlation between astrocyte-related genes and mitophagy-related genes in MDD.
The microarray dataset of MDD was downloaded from the Gene Expression Omnibus database and identified astrocyte- and mitophagy-related differentially expressed genes (AMRDEGs). We used three machine learning algorithms to identify hub AMRDEGs and constructed a diagnostic prediction model. Also, we analyzed transcription factor-gene and gene-microRNA interaction networks, and the immune infiltration in MDD and healthy controls. Besides, we performed consensus clustering analysis, immune infiltration analysis, and gene set variation analysis of MDD samples.
The present research identified 3 hub AMRDEGs (GRN, NDUFAF4, and SNCA), and a good diagnostic model with potential clinical applications was constructed and validated. Besides, we identified 6 transcription factors and 14 microRNAs. The immune infiltration analysis showed that MDD was closely related to immune cells. Gene set variant analysis showed that MDD was related to immune and mitochondrial metabolism and inflammatory signaling pathways.
We identified 3 hub AMRDEGs, new biomarkers for treating and diagnosing MDD and associated with immuno-inflammation. Our research provides new insights into the early diagnosis and treatment of MDD.
重度抑郁症(MDD)是一种普遍存在的精神和情绪障碍,其病因复杂且具有异质性。自噬是细胞的一种选择性自噬,它专门清除功能失调的线粒体。星形胶质细胞中的线粒体功能障碍被认为是 MDD 的一个关键发病机制。然而,关于 MDD 中星形胶质细胞自噬的研究还很少。为了探讨自噬对星形胶质细胞的影响,我们使用生物信息学方法分析了 MDD 中星形胶质细胞相关基因与自噬相关基因之间的相关性。
从基因表达综合数据库中下载 MDD 的微阵列数据集,并鉴定星形胶质细胞和自噬相关差异表达基因(AMRDEGs)。我们使用三种机器学习算法来识别关键 AMRDEGs,并构建诊断预测模型。此外,我们还分析了转录因子-基因和基因-微小 RNA 相互作用网络,以及 MDD 和健康对照中的免疫浸润。此外,我们对 MDD 样本进行了共识聚类分析、免疫浸润分析和基因集变异分析。
本研究确定了 3 个关键 AMRDEGs(GRN、NDUFAF4 和 SNCA),并构建和验证了一个具有潜在临床应用价值的良好诊断模型。此外,我们还鉴定了 6 个转录因子和 14 个微小 RNA。免疫浸润分析表明,MDD 与免疫细胞密切相关。基因集变异分析表明,MDD 与免疫和线粒体代谢以及炎症信号通路有关。
我们确定了 3 个关键 AMRDEGs,它们是治疗和诊断 MDD 的新生物标志物,并与免疫炎症有关。我们的研究为 MDD 的早期诊断和治疗提供了新的见解。