Henderson Jake E, Wreden Chris C, Heckscher Ellie S
Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA.
Committee for Development, Regeneration, and Stem Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA.
Cold Spring Harb Protoc. 2024 Sep 16. doi: 10.1101/pdb.prot108423.
In the nerve cord, much is known about the generation of neurons from neuronal stem cells. Over the lifetime of a neuron, the cumulative expression of genes within that neuron determines its fate. Furthermore, gene expression in mature neurons determines their functional characteristics. It is therefore useful to visualize neural gene expression, which is often done via staining with antibodies to a protein of interest. In cases where there is no antibody to a desired gene product, or when it is useful to detect RNA rather than protein products, fluorescent in situ hybridization chain reaction for RNA (HCR RNA-FISH, or HCR for this protocol) can be used to detect and quantify RNA expression. RNA molecules reside predominantly in the cell soma, so HCR can facilitate determining neuron identity because somata position within the nerve cord is stereotyped across animals. HCR provides high-amplitude, high-fidelity signals. In principle, HCR can be broken down into a detection/hybridization stage and an amplification stage. During detection/hybridization, a probe set hybridizes to multiple sequences within a target gene. In the amplification step, concatemerized fluorescent hairpins bind to the hybridized probes. This two-step process increases the specificity of the fluorescent signal and helps reduce the likelihood of background fluorescence compared to traditional in situ hybridization techniques where the hybridizing probe itself contains the fluorescent signal. Here, we describe a protocol for using HCR to study gene expression in the embryonic and larval nerve cord. We also describe how to combine HCR with immunofluorescence staining.
在神经索中,关于神经元干细胞如何产生神经元已有很多了解。在神经元的整个生命周期中,该神经元内基因的累积表达决定了其命运。此外,成熟神经元中的基因表达决定了它们的功能特性。因此,可视化神经基因表达很有用,这通常是通过用针对感兴趣蛋白质的抗体进行染色来完成的。在没有针对所需基因产物的抗体的情况下,或者当检测RNA而不是蛋白质产物有用时,可以使用RNA荧光原位杂交链式反应(HCR RNA-FISH,本方案中简称为HCR)来检测和定量RNA表达。RNA分子主要存在于细胞体中,因此HCR有助于确定神经元身份,因为神经索内细胞体的位置在不同动物之间是固定的。HCR提供高幅度、高保真的信号。原则上,HCR可以分为检测/杂交阶段和扩增阶段。在检测/杂交过程中,一组探针与目标基因内的多个序列杂交。在扩增步骤中,串联的荧光发夹与杂交探针结合。与传统的原位杂交技术相比,这种两步过程提高了荧光信号的特异性,并有助于降低背景荧光的可能性,在传统原位杂交技术中,杂交探针本身含有荧光信号。在这里,我们描述了一种使用HCR研究胚胎和幼虫神经索中基因表达的方案。我们还描述了如何将HCR与免疫荧光染色相结合。