Suppr超能文献

从大规模深度神经网络中解读顺式调控相互作用。

Interpreting cis-regulatory interactions from large-scale deep neural networks.

机构信息

Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, New York, NY, USA.

出版信息

Nat Genet. 2024 Nov;56(11):2517-2527. doi: 10.1038/s41588-024-01923-3. Epub 2024 Sep 16.

Abstract

The rise of large-scale, sequence-based deep neural networks (DNNs) for predicting gene expression has introduced challenges in their evaluation and interpretation. Current evaluations align DNN predictions with orthogonal experimental data, providing insights into generalization but offering limited insights into their decision-making process. Existing model explainability tools focus mainly on motif analysis, which becomes complex when interpreting longer sequences. Here we present cis-regulatory element model explanations (CREME), an in silico perturbation toolkit that interprets the rules of gene regulation learned by a genomic DNN. Applying CREME to Enformer, a state-of-the-art DNN, we identify cis-regulatory elements that enhance or silence gene expression and characterize their complex interactions. CREME can provide interpretations across multiple scales of genomic organization, from cis-regulatory elements to fine-mapped functional sequence elements within them, offering high-resolution insights into the regulatory architecture of the genome. CREME provides a powerful toolkit for translating the predictions of genomic DNNs into mechanistic insights of gene regulation.

摘要

大规模基于序列的深度神经网络(DNN)在预测基因表达方面的兴起,给它们的评估和解释带来了挑战。目前的评估方法将 DNN 预测与正交实验数据进行对齐,这为模型的泛化能力提供了深入的见解,但对其决策过程的理解有限。现有的模型可解释性工具主要集中在基序分析上,而当解释较长的序列时,这种方法就变得复杂了。在这里,我们提出了顺式调控元件模型解释(CREME),这是一个基于计算机的扰动工具包,可以解释基因组 DNN 学习到的基因调控规则。我们将 CREME 应用于 Enformer,一种最先进的 DNN,识别出增强或沉默基因表达的顺式调控元件,并对它们的复杂相互作用进行了特征描述。CREME 可以在多个基因组组织尺度上提供解释,从顺式调控元件到其中精细映射的功能序列元件,为基因组的调控结构提供高分辨率的见解。CREME 为将基因组 DNN 的预测转化为基因调控的机制见解提供了一个强大的工具包。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验