Suppr超能文献

通过气相透射电子显微镜对氧化物载体上催化剂纳米颗粒抗烧结性能的原位观察。

In situ observation of catalyst nanoparticle sintering resistance on oxide supports via gas phase transmission electron microscopy.

作者信息

Kim Wonjun, Kim Kangsik, Kim Jaejin, Lee Zonghoon

机构信息

Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea.

Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.

出版信息

Appl Microsc. 2024 Sep 17;54(1):7. doi: 10.1186/s42649-024-00100-4.

Abstract

Oxide-supported metal catalysts are essential components in industrial processes for catalytic conversion. However, the performance of these catalysts is often compromised in high temperature reaction environments due to sintering effects. Currently, a number of studies are underway with the objective of improving the metal support interaction (MSI) effect in order to enhance sintering resistance by surface modification of the oxide support, including the formation of inhomogeneous defects on the oxide support, the addition of a rare earth element, the use of different facets, encapsulation, and other techniques. The recent developments in in situ gas phase transmission electron microscopy (TEM) have enabled direct observation of the sintering process of NPs in real time. This capability further allows to verify the efficacy of the methods used to tailor the support surface and contributes effectively to improving sintering resistance. Here, we review a few selected studies on how in situ gas phase TEM has been used to prevent the sintering of catalyst NPs on oxide supports.

摘要

氧化物负载型金属催化剂是催化转化工业过程中的关键组分。然而,由于烧结效应,这些催化剂的性能在高温反应环境中常常受到损害。目前,为了通过对氧化物载体进行表面改性来增强抗烧结性能,从而改善金属-载体相互作用(MSI)效应,正在开展多项研究,包括在氧化物载体上形成不均匀缺陷、添加稀土元素、使用不同晶面、封装及其他技术。原位气相透射电子显微镜(TEM)的最新进展使得能够实时直接观察纳米颗粒的烧结过程。这种能力进一步有助于验证用于调整载体表面的方法的有效性,并有效地促进抗烧结性能的提高。在此,我们综述了一些关于如何利用原位气相TEM防止催化剂纳米颗粒在氧化物载体上烧结的精选研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db49/11405595/63eeb9181cba/42649_2024_100_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验