文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

推进针对新型药物靶点的活性化合物发现:人工智能驱动方法的见解。

Advancing active compound discovery for novel drug targets: insights from AI-driven approaches.

作者信息

Wang Xing-You, Chen Yang, Li Yu-Fan, Wei Chao-Yang, Liu Meng-Ya, Yuan Chen-Xing, Zheng Yao-Yu, Qin Mo-Han, Sheng Yu-Feng, Tong Xiao-Chu, Zheng Ming-Yue, Li Xu-Tong

机构信息

Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, 201203, China.

University of Chinese Academy of Sciences, Beijing, 100049, China.

出版信息

Acta Pharmacol Sin. 2025 Jun 17. doi: 10.1038/s41401-025-01591-x.


DOI:10.1038/s41401-025-01591-x
PMID:40528034
Abstract

The discovery of active compounds for novel, underexplored targets is essential for advancing innovative therapeutics across a wide range of diseases. Recent advancements in artificial intelligence (AI) are revolutionizing active compound discovery by dramatically enhancing the efficiency, accuracy, and scalability previously challenged by traditional methods. This review provides a comprehensive overview of AI-driven methodologies for active compound discovery, with a particular focus on their application to novel targets. Initially, we explore how AI overcomes traditional bottlenecks in molecular design, enabling precise protein perception through high-accuracy protein structure prediction and enhanced docking precision. Building upon these target-focused capabilities, AI-driven approaches also advance ligand exploration, effectively bridging biological and chemical spaces through sophisticated data transfer techniques that maximize the utility of available activity data. By assessing overall cellular or organismal responses, AI plays a pivotal role in decoding complex biological systems, driving phenotypic drug discovery (PDD) through multi-modal data integration. Finally, we discuss how AI is addressing challenges associated with targeting previously undruggable proteins, exemplified by the development of protein degraders. By synthesizing these cutting-edge advancements, this review serves as a valuable resource for researchers seeking to leverage AI in the discovery of next-generation therapeutics.

摘要

发现针对新型、未充分探索靶点的活性化合物对于推进针对多种疾病的创新疗法至关重要。人工智能(AI)的最新进展正在彻底改变活性化合物的发现方式,极大地提高了传统方法以前面临挑战的效率、准确性和可扩展性。本综述全面概述了用于活性化合物发现的人工智能驱动方法,特别关注其在新型靶点上的应用。首先,我们探讨人工智能如何克服分子设计中的传统瓶颈,通过高精度蛋白质结构预测和提高对接精度实现精确的蛋白质感知。基于这些以靶点为重点的能力,人工智能驱动的方法还推进了配体探索,通过复杂的数据转移技术有效地弥合生物和化学空间,从而最大限度地利用可用的活性数据。通过评估整体细胞或机体反应,人工智能在解码复杂生物系统中发挥关键作用,通过多模态数据整合推动表型药物发现(PDD)。最后,我们讨论人工智能如何应对与靶向以前难以成药的蛋白质相关的挑战,以蛋白质降解剂的开发为例。通过综合这些前沿进展,本综述为寻求在发现下一代疗法中利用人工智能的研究人员提供了宝贵资源。

相似文献

[1]
Advancing active compound discovery for novel drug targets: insights from AI-driven approaches.

Acta Pharmacol Sin. 2025-6-17

[2]
Role of artificial intelligence in cancer drug discovery and development.

Cancer Lett. 2025-9-1

[3]
Artificial intelligence (AI) in restorative dentistry: current trends and future prospects.

BMC Oral Health. 2025-4-18

[4]
Advancing precision oncology with AI-powered genomic analysis.

Front Pharmacol. 2025-4-30

[5]
Advances in AI for Protein Structure Prediction: Implications for Cancer Drug Discovery and Development.

Biomolecules. 2024-3-12

[6]
Computer-Aided Drug Discovery for Undruggable Targets.

Chem Rev. 2025-7-9

[7]
Artificial intelligence revolution in drug discovery: A paradigm shift in pharmaceutical innovation.

Int J Pharm. 2025-7-25

[8]
AI-Powered Microfluidics: Shaping the Future of Phenotypic Drug Discovery.

ACS Appl Mater Interfaces. 2024-7-31

[9]
Revolutionizing surgery: AI and robotics for precision, risk reduction, and innovation.

J Robot Surg. 2025-1-7

[10]
Revolutionizing Molecular Design for Innovative Therapeutic Applications through Artificial Intelligence.

Molecules. 2024-9-29

本文引用的文献

[1]
AlphaFold prediction of structural ensembles of disordered proteins.

Nat Commun. 2025-2-14

[2]
BindingDB in 2024: a FAIR knowledgebase of protein-small molecule binding data.

Nucleic Acids Res. 2025-1-6

[3]
Ab initio characterization of protein molecular dynamics with AIBMD.

Nature. 2024-11

[4]
Enhancing the Predictive Power of Machine Learning Models through a Chemical Space Complementary DEL Screening Strategy.

J Med Chem. 2024-11-14

[5]
GPCRSPACE: A New GPCR Real Expanded Library Based on Large Language Models Architecture and Positive Sample Machine Learning Strategies.

J Med Chem. 2024-9-26

[6]
Integrative residue-intuitive machine learning and MD Approach to Unveil Allosteric Site and Mechanism for β2AR.

Nat Commun. 2024-9-16

[7]
Semi-supervised meta-learning elucidates understudied molecular interactions.

Commun Biol. 2024-9-9

[8]
De novo generation of SARS-CoV-2 antibody CDRH3 with a pre-trained generative large language model.

Nat Commun. 2024-8-10

[9]
Computational methods and key considerations for in silico design of proteolysis targeting chimera (PROTACs).

Int J Biol Macromol. 2024-10

[10]
Deep representation learning of chemical-induced transcriptional profile for phenotype-based drug discovery.

Nat Commun. 2024-6-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索