Suppr超能文献

泰国民众与游客之间的 COVID-19 传染病的敏感性分析与全局稳定性

Sensitivity analysis and global stability of epidemic between Thais and tourists for Covid -19.

机构信息

Department of Mathematics, Faculty of Science, Phuket Rajabhat University, Phuket, Thailand.

Department of Physics, Faculty of Science, Mahidol University, Bangkok, Thailand.

出版信息

Sci Rep. 2024 Sep 16;14(1):21569. doi: 10.1038/s41598-024-71009-x.

Abstract

This study employs a mathematical model to analyze and forecast the severe outbreak of SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2), focusing on the socio-economic ramifications within the Thai population and among foreign tourists. Specifically, the model examines the impact of the disease on various population groups, including susceptible (S), exposed (E), infected (I), quarantined (Q), and recovered (R) individuals among tourists visiting the country. The stability theory of differential equations is utilized to validate the mathematical model. This involves assessing the stability of both the disease-free equilibrium and the endemic equilibrium using the basic reproduction number. Emphasis is placed on local stability, the positivity of solutions, and the invariant regions of solutions. Additionally, a sensitivity analysis of the model is conducted. The computation of the basic reproduction number (R0) reveals that the disease-free equilibrium is locally asymptotically stable when R0 is less than 1, whereas the endemic equilibrium is locally asymptotically stable when R0 exceeds 1. Notably, both equilibriums are globally asymptotically stable under the same conditions. Through numerical simulations, the study concludes that the outcome of COVID-19 is most sensitive to reductions in transmission rates. Furthermore, the sensitivity of the model to all parameters is thoroughly considered, informing strategies for disease control through various intervention measures.

摘要

本研究采用数学模型分析和预测 SARS-CoV-2(严重急性呼吸综合征冠状病毒 2)的严重爆发情况,重点关注泰国人口和外国游客中的社会经济影响。具体而言,该模型研究了疾病对包括访问该国的游客中的易感者(S)、暴露者(E)、感染者(I)、隔离者(Q)和康复者(R)在内的各类人群的影响。利用微分方程稳定性理论来验证数学模型。这包括使用基本繁殖数评估无病平衡点和地方平衡点的稳定性。重点关注局部稳定性、解的正定性和解的不变区域。此外,还对模型进行了敏感性分析。基本繁殖数(R0)的计算表明,当 R0 小于 1 时,无病平衡点是局部渐近稳定的,而当 R0 超过 1 时,地方平衡点是局部渐近稳定的。值得注意的是,在相同条件下,这两个平衡点都是全局渐近稳定的。通过数值模拟,研究得出结论,COVID-19 的结果对传播率的降低最为敏感。此外,还彻底考虑了模型对所有参数的敏感性,通过各种干预措施为疾病控制提供了策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49f4/11405695/3f00683d2ea2/41598_2024_71009_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验