Department of Mathematics and Computer Science, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani 94000, Thailand.
Comput Math Methods Med. 2021 Mar 30;2021:6664483. doi: 10.1155/2021/6664483. eCollection 2021.
In this study, we propose a new mathematical model and analyze it to understand the transmission dynamics of the COVID-19 pandemic in Bangkok, Thailand. It is divided into seven compartmental classes, namely, susceptible (), exposed (), symptomatically infected ( ), asymptomatically infected ( ), quarantined (), recovered (), and death (), respectively. The next-generation matrix approach was used to compute the basic reproduction number denoted as of the proposed model. The results show that the disease-free equilibrium is globally asymptotically stable if < 1. On the other hand, the global asymptotic stability of the endemic equilibrium occurs if > 1. The mathematical analysis of the model is supported using numerical simulations. Moreover, the model's analysis and numerical results prove that the consistent use of face masks would go on a long way in reducing the COVID-19 pandemic.
在这项研究中,我们提出了一个新的数学模型,并对其进行了分析,以了解泰国曼谷 COVID-19 大流行的传播动态。它分为七个隔室类别,分别为易感者()、暴露者()、有症状感染者()、无症状感染者()、隔离者()、康复者()和死亡者()。下一代矩阵方法用于计算所提出模型的基本繁殖数,表示为。结果表明,如果<1,则无病平衡点全局渐近稳定。另一方面,如果>1,则地方病平衡点全局渐近稳定。使用数值模拟对模型的数学分析提供了支持。此外,模型的分析和数值结果证明,一致使用口罩将大大有助于减少 COVID-19 大流行。