Suppr超能文献

COVID-19 大流行的数学模型:泰国曼谷的案例研究。

A Mathematical Model of COVID-19 Pandemic: A Case Study of Bangkok, Thailand.

机构信息

Department of Mathematics and Computer Science, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani 94000, Thailand.

出版信息

Comput Math Methods Med. 2021 Mar 30;2021:6664483. doi: 10.1155/2021/6664483. eCollection 2021.

Abstract

In this study, we propose a new mathematical model and analyze it to understand the transmission dynamics of the COVID-19 pandemic in Bangkok, Thailand. It is divided into seven compartmental classes, namely, susceptible (), exposed (), symptomatically infected ( ), asymptomatically infected ( ), quarantined (), recovered (), and death (), respectively. The next-generation matrix approach was used to compute the basic reproduction number denoted as of the proposed model. The results show that the disease-free equilibrium is globally asymptotically stable if < 1. On the other hand, the global asymptotic stability of the endemic equilibrium occurs if > 1. The mathematical analysis of the model is supported using numerical simulations. Moreover, the model's analysis and numerical results prove that the consistent use of face masks would go on a long way in reducing the COVID-19 pandemic.

摘要

在这项研究中,我们提出了一个新的数学模型,并对其进行了分析,以了解泰国曼谷 COVID-19 大流行的传播动态。它分为七个隔室类别,分别为易感者()、暴露者()、有症状感染者()、无症状感染者()、隔离者()、康复者()和死亡者()。下一代矩阵方法用于计算所提出模型的基本繁殖数,表示为。结果表明,如果<1,则无病平衡点全局渐近稳定。另一方面,如果>1,则地方病平衡点全局渐近稳定。使用数值模拟对模型的数学分析提供了支持。此外,模型的分析和数值结果证明,一致使用口罩将大大有助于减少 COVID-19 大流行。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1fe/8010525/61829180a616/CMMM2021-6664483.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验