Wood J G, Napier-Marshall L
Histochem J. 1985 May;17(5):585-94. doi: 10.1007/BF01003198.
Lectin cytochemistry, together with exoglycosidase enzyme digestion, has been used to characterize partially glycoconjugates of several intracellular compartments in frog photoreceptors. In order to obtain uniform access of reagents to all intracellular compartments, the experiments were performed directly on semi-thin sections of Xenopus laevis retinal tissue embedded in a hydrophilic plastic resin. In the rod, the major photoreceptor intracellular binding sites for wheat germ agglutinin (WGA) are the outer segment, the Golgi complex, and other inner segment organelles which are probably involved in the transport of glycoconjugates from the Golgi complex to the outer segment. In addition, shed outer segment tips (phagosomes) are uniformly labelled with WGA. The WGA-binding sites of the outer segment and of the presumed transport organelles are resistant to neuraminidase digestion. This is consistent with the possibility that glycoconjugates (primarily opsin) are transported from the Golgi complex to the outer segment without further oligosaccharide processing. Specific staining of rod outer segments and of phagosomes is also obtained with the N-acetylglucosamine-specific lectin, succinyl-WGA (S-WGA). Outer segments and phagosomes stain the same with WGA, S-WGA and a variety of other lectins tested suggesting that no major post-Golgi oligosaccharide processing accompanies the shedding-phagocytosis event. Concanavalin A (Con A) staining of intracellular sites in rod inner segments reveals a striking difference compared to WGA staining in that the Con A binding sites are concentrated in the photoreceptor axon and presynaptic terminal. These results, and results from previous studies, indicate that the photoreceptor may utilize different mechanisms of oligosaccharide processing from the level of a single Golgi complex to the opposite ends of this cell. Furthermore, those glycoconjugates destined for the presynaptic terminal may undergo post-Golgi processing at or near their sites of insertion into the presynaptic plasma membrane.
凝集素细胞化学技术,结合外切糖苷酶消化法,已被用于表征青蛙光感受器中几个细胞内区室的部分糖缀合物。为了使试剂能均匀地进入所有细胞内区室,实验直接在包埋于亲水性塑料树脂中的非洲爪蟾视网膜组织的半薄切片上进行。在视杆细胞中,麦胚凝集素(WGA)的主要光感受器细胞内结合位点是外段、高尔基体复合体以及其他内段细胞器,这些细胞器可能参与了糖缀合物从高尔基体复合体向外段的运输。此外,脱落的外段顶端(吞噬体)被WGA均匀标记。外段和推测的运输细胞器的WGA结合位点对神经氨酸酶消化具有抗性。这与糖缀合物(主要是视蛋白)从高尔基体复合体向外段运输而无需进一步寡糖加工的可能性一致。用N - 乙酰葡糖胺特异性凝集素琥珀酰 - WGA(S - WGA)也可获得视杆细胞外段和吞噬体的特异性染色。外段和吞噬体用WGA、S - WGA以及测试的多种其他凝集素染色结果相同,这表明在脱落 - 吞噬作用过程中,高尔基体后没有主要的寡糖加工过程。与WGA染色相比,伴刀豆球蛋白A(Con A)对视杆细胞内段细胞位点的染色显示出显著差异,因为Con A结合位点集中在光感受器轴突和突触前末端。这些结果以及先前研究的结果表明,从单个高尔基体复合体水平到该细胞的相对两端,光感受器可能利用不同的寡糖加工机制。此外,那些运往突触前末端的糖缀合物可能在插入突触前质膜的位点或其附近经历高尔基体后加工。