Suppr超能文献

早孕期多种生物标志物预测妊娠期糖尿病。

Prediction of gestational diabetes mellitus by multiple biomarkers at early gestation.

机构信息

Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Department of Pediatrics, Xinhua Hospital, Early Life Health Institute, Shanghai Jiao-Tong University School of Medicine, Kong-Jiang Road, Shanghai, 200092, China.

Prosserman Centre for Population Health Research, Department of Obstetrics and Gynecology, Mount Sinai Hospital, Faculty of Medicine, Lunenfeld-Tanenbaum Research Institute, University of Toronto, L5-240, Murray Street 60, Toronto, ON, M5T 3H7, Canada.

出版信息

BMC Pregnancy Childbirth. 2024 Sep 16;24(1):601. doi: 10.1186/s12884-024-06651-4.

Abstract

BACKGROUND

It remains unclear which early gestational biomarkers can be used in predicting later development of gestational diabetes mellitus (GDM). We sought to identify the optimal combination of early gestational biomarkers in predicting GDM in machine learning (ML) models.

METHODS

This was a nested case-control study including 100 pairs of GDM and euglycemic (control) pregnancies in the Early Life Plan cohort in Shanghai, China. High sensitivity C reactive protein, sex hormone binding globulin, insulin-like growth factor I, IGF binding protein 2 (IGFBP-2), total and high molecular weight adiponectin and glycosylated fibronectin concentrations were measured in serum samples at 11-14 weeks of gestation. Routine first-trimester blood test biomarkers included fasting plasma glucose (FPG), serum lipids and thyroid hormones. Five ML models [stepwise logistic regression, least absolute shrinkage and selection operator (LASSO), random forest, support vector machine and k-nearest neighbor] were employed to predict GDM. The study subjects were randomly split into two sets for model development (training set, n = 70 GDM/control pairs) and validation (testing set: n = 30 GDM/control pairs). Model performance was evaluated by the area under the curve (AUC) in receiver operating characteristics.

RESULTS

FPG and IGFBP-2 were consistently selected as predictors of GDM in all ML models. The random forest model including FPG and IGFBP-2 performed the best (AUC 0.80, accuracy 0.72, sensitivity 0.87, specificity 0.57). Adding more predictors did not improve the discriminant power.

CONCLUSION

The combination of FPG and IGFBP-2 at early gestation (11-14 weeks) could predict later development of GDM with moderate discriminant power. Further validation studies are warranted to assess the utility of this simple combination model in other independent cohorts.

摘要

背景

目前尚不清楚哪些早期妊娠生物标志物可用于预测妊娠糖尿病(GDM)的后期发展。我们试图在机器学习(ML)模型中确定预测 GDM 的最佳早期妊娠生物标志物组合。

方法

这是一项嵌套病例对照研究,纳入了中国上海早期生活计划队列中的 100 对 GDM 和血糖正常(对照)妊娠。在妊娠 11-14 周时,检测血清样本中的高敏 C 反应蛋白、性激素结合球蛋白、胰岛素样生长因子 I、IGF 结合蛋白 2(IGFBP-2)、总和高分子量脂联素和糖化纤维连接蛋白浓度。常规的早孕期血液检查生物标志物包括空腹血糖(FPG)、血脂和甲状腺激素。采用 5 种 ML 模型[逐步逻辑回归、最小绝对收缩和选择算子(LASSO)、随机森林、支持向量机和 k-最近邻]预测 GDM。研究对象随机分为两组进行模型开发(训练集,n=70 例 GDM/对照组)和验证(测试集:n=30 例 GDM/对照组)。通过接受者操作特征曲线下的面积(AUC)评估模型性能。

结果

在所有 ML 模型中,FPG 和 IGFBP-2 均被一致选为 GDM 的预测因子。包括 FPG 和 IGFBP-2 的随机森林模型表现最佳(AUC 0.80,准确性 0.72,敏感性 0.87,特异性 0.57)。添加更多的预测因子并不能提高鉴别能力。

结论

在妊娠早期(11-14 周),FPG 和 IGFBP-2 的组合可以预测 GDM 的后期发展,具有中等的鉴别能力。需要进一步的验证研究来评估该简单组合模型在其他独立队列中的实用性。

相似文献

1
Prediction of gestational diabetes mellitus by multiple biomarkers at early gestation.
BMC Pregnancy Childbirth. 2024 Sep 16;24(1):601. doi: 10.1186/s12884-024-06651-4.
3
Glycosylated fibronectin as a first-trimester biomarker for prediction of gestational diabetes.
Obstet Gynecol. 2013 Sep;122(3):586-94. doi: 10.1097/AOG.0b013e3182a0c88b.
6
First trimester serum biomarkers to predict gestational diabetes in a high-risk cohort: Striving for clinically useful thresholds.
Eur J Obstet Gynecol Reprod Biol. 2018 Mar;222:7-12. doi: 10.1016/j.ejogrb.2017.12.051. Epub 2018 Jan 1.
8
Prediction of gestational diabetes mellitus at first trimester in low-risk pregnancies.
Taiwan J Obstet Gynecol. 2016 Dec;55(6):815-820. doi: 10.1016/j.tjog.2016.04.032.
9
A Novel Early Pregnancy Risk Prediction Model for Gestational Diabetes Mellitus.
Fetal Diagn Ther. 2019;45(2):76-84. doi: 10.1159/000486853. Epub 2018 Jun 13.
10
Role of serum biomarkers to optimise a validated clinical risk prediction tool for gestational diabetes.
Aust N Z J Obstet Gynaecol. 2019 Apr;59(2):251-257. doi: 10.1111/ajo.12833. Epub 2018 Jun 14.

引用本文的文献

1
Artificial Intelligence in Gestational Diabetes Care: A Systematic Review.
J Diabetes Sci Technol. 2025 Aug 25:19322968251355967. doi: 10.1177/19322968251355967.
2
Glycosylated fibronectin as a biomarker to predict gestational diabetes mellitus in the first trimester of pregnancy.
J Family Med Prim Care. 2025 Jun;14(6):2484-2489. doi: 10.4103/jfmpc.jfmpc_1842_24. Epub 2025 Jun 30.
3
New Insights in the Diagnostic Potential of Sex Hormone-Binding Globulin (SHBG)-Clinical Approach.
Biomedicines. 2025 May 15;13(5):1207. doi: 10.3390/biomedicines13051207.
4

本文引用的文献

1
Machine Learning Prediction Models for Gestational Diabetes Mellitus: Meta-analysis.
J Med Internet Res. 2022 Mar 16;24(3):e26634. doi: 10.2196/26634.
2
Fasting plasma glucose in the first trimester is related to gestational diabetes mellitus and adverse pregnancy outcomes.
Endocrine. 2022 Jan;75(1):70-81. doi: 10.1007/s12020-021-02831-w. Epub 2021 Aug 3.
3
Early Prediction of Gestational Diabetes Mellitus in the Chinese Population via Advanced Machine Learning.
J Clin Endocrinol Metab. 2021 Mar 8;106(3):e1191-e1205. doi: 10.1210/clinem/dgaa899.
6
First trimester biomarkers for prediction of gestational diabetes mellitus.
Placenta. 2020 Nov;101:80-89. doi: 10.1016/j.placenta.2020.08.020. Epub 2020 Sep 6.
7
Machine learning risk score for prediction of gestational diabetes in early pregnancy in Tianjin, China.
Diabetes Metab Res Rev. 2021 Jul;37(5):e3397. doi: 10.1002/dmrr.3397. Epub 2020 Sep 9.
8
Prediction of gestational diabetes mellitus in the first 19 weeks of pregnancy using machine learning techniques.
J Matern Fetal Neonatal Med. 2022 Jul;35(13):2457-2463. doi: 10.1080/14767058.2020.1786517. Epub 2020 Aug 6.
10
First-trimester fasting glycemia as a predictor of gestational diabetes (GDM) and adverse pregnancy outcomes.
Acta Diabetol. 2020 Jun;57(6):697-703. doi: 10.1007/s00592-019-01474-8. Epub 2020 Jan 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验