Suppr超能文献

利用智能监控器增强临床数据检索:基于 NiFi 的 Elasticsearch 查询的 ETL 管道。

Enhancing clinical data retrieval with Smart Watchers: a NiFi-based ETL pipeline for Elasticsearch queries.

机构信息

King's College Hospital NHS Foundation Trust, London, UK.

Guy's and St Thomas' NHS Foundation Trust, London, UK.

出版信息

BMC Med Inform Decis Mak. 2024 Sep 16;24(1):255. doi: 10.1186/s12911-024-02633-w.

Abstract

BACKGROUND

The aim is to develop and deploy an automated clinical alert system to enhance patient care and streamline healthcare operations. Structured and unstructured data from multiple sources are used to generate near real-time alerts for specific clinical scenarios, with an additional goal to improve clinical decision-making through accuracy and reliability.

METHODS

The automated clinical alert system, named Smart Watchers, was developed using Apache NiFi and Python scripts to create flexible data processing pipelines and customisable clinical alerts. A comparative analysis between Smart Watchers and the legacy Elastic Watchers was conducted to evaluate performance metrics such as accuracy, reliability, and scalability. The evaluation involved measuring the time taken for manual data extraction through the electronic patient record (EPR) front-end and comparing it with the automated data extraction process using Smart Watchers.

RESULTS

Deployment of Smart Watchers showcased a consistent time savings between 90% to 98.67% compared to manual data extraction through the EPR front-end. The results demonstrate the efficiency of Smart Watchers in automating data extraction and alert generation, significantly reducing the time required for these tasks when compared to manual methods in a scalable manner.

CONCLUSIONS

The research underscores the utility of employing an automated clinical alert system, and its portability facilitated its use across multiple clinical settings. The successful implementation and positive impact of the system lay a foundation for future technological innovations in this rapidly evolving field.

摘要

背景

本研究旨在开发和部署一个自动化临床警报系统,以提高患者护理质量并优化医疗保健运作流程。我们从多个来源收集结构化和非结构化数据,以生成特定临床场景的近乎实时警报,并进一步通过提高准确性和可靠性来改善临床决策。

方法

我们将这个自动化临床警报系统命名为 Smart Watchers,它是使用 Apache NiFi 和 Python 脚本来开发的,用于创建灵活的数据处理管道和可定制的临床警报。我们对 Smart Watchers 和传统的 Elastic Watchers 进行了比较分析,以评估准确性、可靠性和可扩展性等性能指标。评估包括通过电子病历(EPR)前端手动提取数据所需的时间,并将其与使用 Smart Watchers 的自动化数据提取过程进行比较。

结果

Smart Watchers 的部署展示了与通过 EPR 前端手动提取数据相比,其在时间上的显著节省,节省时间范围为 90%至 98.67%。结果表明,与手动方法相比,Smart Watchers 在自动化数据提取和警报生成方面具有高效性,能够以可扩展的方式显著减少这些任务所需的时间。

结论

这项研究强调了采用自动化临床警报系统的实用性,并且其便携性使其能够在多个临床环境中使用。该系统的成功实施和积极影响为这个快速发展的领域中的未来技术创新奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d107/11404005/9552cc86b1d3/12911_2024_2633_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验