Suppr超能文献

基于电子健康记录使用CogStack实现实时精神病风险检测与警报系统。

Implementation of a Real-Time Psychosis Risk Detection and Alerting System Based on Electronic Health Records using CogStack.

作者信息

Wang Tao, Oliver Dominic, Msosa Yamiko, Colling Craig, Spada Giulia, Roguski Łukasz, Folarin Amos, Stewart Robert, Roberts Angus, Dobson Richard J B, Fusar-Poli Paolo

机构信息

Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London;

Early Psychosis: Interventions and Clinical-detection (EPIC) lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London.

出版信息

J Vis Exp. 2020 May 15(159). doi: 10.3791/60794.

Abstract

Recent studies have shown that an automated, lifespan-inclusive, transdiagnostic, and clinically based, individualized risk calculator provides a powerful system for supporting the early detection of individuals at-risk of psychosis at a large scale, by leveraging electronic health records (EHRs). This risk calculator has been externally validated twice and is undergoing feasibility testing for clinical implementation. Integration of this risk calculator in clinical routine should be facilitated by prospective feasibility studies, which are required to address pragmatic challenges, such as missing data, and the usability of this risk calculator in a real-world and routine clinical setting. Here, we present an approach for a prospective implementation of a real-time psychosis risk detection and alerting service in a real-world EHR system. This method leverages the CogStack platform, which is an open-source, lightweight, and distributed information retrieval and text extraction system. The CogStack platform incorporates a set of services that allow for full-text search of clinical data, lifespan-inclusive, real-time calculation of psychosis risk, early risk-alerting to clinicians, and the visual monitoring of patients over time. Our method includes: 1) ingestion and synchronization of data from multiple sources into the CogStack platform, 2) implementation of a risk calculator, whose algorithm was previously developed and validated, for timely computation of a patient's risk of psychosis, 3) creation of interactive visualizations and dashboards to monitor patients' health status over time, and 4) building automated alerting systems to ensure that clinicians are notified of patients at-risk, so that appropriate actions can be pursued. This is the first ever study that has developed and implemented a similar detection and alerting system in clinical routine for early detection of psychosis.

摘要

最近的研究表明,一个自动化、涵盖整个生命周期、跨诊断且基于临床的个性化风险计算器,通过利用电子健康记录(EHR),为大规模支持早期发现有精神病风险的个体提供了一个强大的系统。这个风险计算器已经过两次外部验证,并且正在进行临床实施的可行性测试。前瞻性可行性研究应有助于将这个风险计算器整合到临床常规中,这类研究需要解决一些实际挑战,比如数据缺失,以及该风险计算器在现实世界和常规临床环境中的可用性。在此,我们提出一种在现实世界的EHR系统中前瞻性实施实时精神病风险检测和警报服务的方法。这种方法利用了CogStack平台,它是一个开源、轻量级且分布式的信息检索和文本提取系统。CogStack平台包含一组服务,可实现临床数据的全文搜索、涵盖整个生命周期的精神病风险实时计算、向临床医生发出早期风险警报以及对患者进行长期视觉监测。我们的方法包括:1)将来自多个来源的数据摄取并同步到CogStack平台;2)实施一个风险计算器,其算法先前已开发并验证,用于及时计算患者的精神病风险;3)创建交互式可视化和仪表板,以长期监测患者的健康状况;4)构建自动警报系统,以确保临床医生收到有风险患者的通知,从而能够采取适当行动。这是有史以来第一项在临床常规中开发并实施类似检测和警报系统以早期发现精神病的研究。

相似文献

引用本文的文献

3
Clinical Information Retrieval: A Literature Review.临床信息检索:文献综述
J Healthc Inform Res. 2024 Jan 23;8(2):313-352. doi: 10.1007/s41666-024-00159-4. eCollection 2024 Jun.

本文引用的文献

5
Transdiagnostic psychiatry: a systematic review.跨诊断精神病学:一项系统综述。
World Psychiatry. 2019 Jun;18(2):192-207. doi: 10.1002/wps.20631.
7
The Science of Prognosis in Psychiatry: A Review.精神病学预后的科学:综述。
JAMA Psychiatry. 2018 Dec 1;75(12):1289-1297. doi: 10.1001/jamapsychiatry.2018.2530.
8
Psychotic Disorders.精神障碍
N Engl J Med. 2018 Jul 19;379(3):270-280. doi: 10.1056/NEJMra1801490.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验