Suppr超能文献

AlphaCRV:一种在使用AlphaFold进行质量建模时识别准确结合剂拓扑结构的流程。

AlphaCRV: a pipeline for identifying accurate binder topologies in mass-modeling with AlphaFold.

作者信息

Guzmán-Vega Francisco J, Arold Stefan T

机构信息

Biological and Environmental Science and Engineering Division, Computational Biology Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia.

出版信息

Bioinform Adv. 2024 Sep 6;4(1):vbae131. doi: 10.1093/bioadv/vbae131. eCollection 2024.

Abstract

MOTIVATION

The speed and accuracy of deep learning-based structure prediction algorithms make it now possible to perform in silico "pull-downs" to identify protein-protein interactions on a proteome-wide scale. However, on such a large scale, existing scoring algorithms are often insufficient to discriminate biologically relevant interactions from false positives.

RESULTS

Here, we introduce AlphaCRV, a Python package that helps identify correct interactors in a one-against-many AlphaFold screen by clustering, ranking, and visualizing conserved binding topologies, based on protein sequence and fold.

AVAILABILITY AND IMPLEMENTATION

AlphaCRV is a Python package for Linux, freely available at https://github.com/strubelab/AlphaCRV.

摘要

动机

基于深度学习的结构预测算法的速度和准确性使得现在有可能在计算机上进行“下拉”操作,以在全蛋白质组范围内识别蛋白质-蛋白质相互作用。然而,在如此大规模的情况下,现有的评分算法往往不足以区分生物学上相关的相互作用和假阳性。

结果

在此,我们引入了AlphaCRV,这是一个Python软件包,它通过基于蛋白质序列和折叠对保守的结合拓扑进行聚类、排序和可视化,帮助在一对一多的AlphaFold筛选中识别正确的相互作用分子。

可用性和实现方式

AlphaCRV是一个适用于Linux的Python软件包,可在https://github.com/strubelab/AlphaCRV上免费获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33d3/11405088/93f0616720f9/vbae131f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验